Advertisement

Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 702–710 | Cite as

Effect of the synthesis conditions on the size of magnetite nanoparticles produced by high-temperature reductive hydrolysis

  • A. E. Dosovitskii
  • E. V. Grishechkina
  • A. L. Mikhlin
  • D. I. Kirdyankin
  • V. M. Novotortsev
Synthesis and Properties of Inorganic Compounds

Abstract

A study was made into the effect of the conditions (synthesis temperature, water content, iron salt(III) concentration, and nature of precipitant) of the synthesis of magnetite nanoparticles by high-temperature reductive hydrolysis of iron(III) salts in an ethylene glycol medium on their size and morphology. It was shown that is basically possible to carry out the direct synthesis of spherical particles with an average size of 55–170 nm while varying synthesis conditions. The obtained particles were characterized by X-ray powder diffraction analysis, and their magnetic properties were explored. The synthesized particles are ferrimagnets. The magnetic moments, numbers, and sizes of domains in magnetite particles of various sizes were found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Usp. Khim. 74, 539 (2005).CrossRefGoogle Scholar
  2. 2.
    R. Massart, IEEE Trans. Magn. 17, 1247 (1981). doi 10.1109/TMAG.1981.1061188CrossRefGoogle Scholar
  3. 3.
    G. Kandasamy and D. Maity, Int. J. Pharm. 496, 191 (2015). doi 10.1016/j.ijpharm.2015.10.058CrossRefGoogle Scholar
  4. 4.
    F. Yazdani, B. Fattahi, and N. Azizi, J. Magn. Magn. Mater. 406, 207 (2016). doi 10.1016/j.jmmm.2016. 01.026CrossRefGoogle Scholar
  5. 5.
    I. Martinez-Mera, M. E. Espinosa-Pesqueira, R. Pérez-Hernández, and J. Arenas-Alatorre, Mater. Lett. 61, 4447 (2007). doi 10.1016/j.matlet.2007.02.018CrossRefGoogle Scholar
  6. 6.
    S. C. Pang, S. F. Chin, and M. A. Anderson, J. Colloid Interface Sci. 311, 94 (2007). doi 10.1016/j.jcis.2007. 02.058CrossRefGoogle Scholar
  7. 7.
    Z. Li, Q. Sun, and M. Gao, Angew. Chem., Int. Ed. Engl. 44, 123 (2005). doi 10.1002/anie.200460715CrossRefGoogle Scholar
  8. 8.
    P. Padwal, R. Bandyopadhyaya, and S. Mehra, Langmuir 30, 15266 (2014). doi 10.1021/la503808dCrossRefGoogle Scholar
  9. 9.
    J. Ge, Y. Hu, M. Biasini, et al., Angew. Chem., Int. Ed. Engl. 46, 4342 (2007). doi 10.1002/anie.200700197CrossRefGoogle Scholar
  10. 10.
    T. Fan, D. Pan, and H. Zhang, Ind. Eng. Chem. Res. 50, 9009 (2011). doi 10.1021/ie200970jCrossRefGoogle Scholar
  11. 11.
    Sh. Guo, D. Li, L. Zhang, et al., Biomaterials 30, 1881 (2009). doi 10.1016/j.biomaterials.2008.12.042CrossRefGoogle Scholar
  12. 12.
    M. Lin and H. Huang, et al., Langmuir 29, 15433 (2013). doi 10.1021/la403577yCrossRefGoogle Scholar
  13. 13.
    TOPAS (Bruker AXS GmbH, Karlsruhe, Germany, 2005).Google Scholar
  14. 14.
    G. Schwarzenbach and H. Flaschka, Die Komplexometrische Titration (Ferdinand Enke, Stuttgart, 1965).Google Scholar
  15. 15.
    A. G. Savchenko, S. V. Salikhov, E. V. Yurtov, and Yu. D. Yagodkin, Bull. Russ. Akad. Sci.: Phys. 77, 704 (2013).Google Scholar
  16. 16.
    S. V. Salikhov, A. G. Savchenko, I. S. Grebennikov, and E. V. Yurtov, Bull. Russ. Akad. Sci.: Phys. 79, 1106 (2015).Google Scholar
  17. 17.
    Yu. D. Yagodkin, S. V. Salikhov, and O. A. Ushakova, Zavod. Lab., Diagn. Mater. 79 (4), 41 (2013).Google Scholar
  18. 18.
    W. Kim, Ch. Suh, S. Cho, et al., Talanta 94, 348 (2012). doi 10.1016/j.talanta.2012.03.001CrossRefGoogle Scholar
  19. 19.
    A. E. Dosovitskii, E. V. Grishechkina, A. L. Mikhlin, et al., Russ. Chem. Bull. 65, 704 (2016).CrossRefGoogle Scholar
  20. 20.
    Tables of Physical Quantities, Ed. by I. K. Kikoin (Moscow, Atomizdat, 1976) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. E. Dosovitskii
    • 1
  • E. V. Grishechkina
    • 1
  • A. L. Mikhlin
    • 1
  • D. I. Kirdyankin
    • 2
  • V. M. Novotortsev
    • 2
  1. 1.IREA Research Institute of Chemical Reagents and Special-Purity SubstancesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations