Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 814–817 | Cite as

Synthesis and heat capacity study of stannates Dy2Sn2O7 and Ho2Sn2O7 in the range 370–1000 K

  • L. T. Denisova
  • L. A. Irtyugo
  • Yu. F. Kargin
  • V. M. Denisov
  • V. V. Beletskii
Physical Methods of Investigation
  • 36 Downloads

Abstract

Stannates Dy2Sn2O7 and Ho2Sn2O7 are produced by solid-phase synthesis from Dy2O3 (Ho2O3)–SnO2 stoichiometric mixtures by calcining at 1473 K. The molar heat capacity of holmium and dysprosium stannates is measured by differential scanning calorimetry (DSC) in the temperature range 370–1000 K. The experimental data are used to calculate thermodynamic properties (enthalpy change H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and the reduced Gibbs free energy Φ°(T)) of the synthesized compound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lian, K. B. Helean, B. J. Kennedy, et al., J. Phys. Chem. B 110, 2343 (2006).CrossRefGoogle Scholar
  2. 2.
    H. Cheng, L. Wang, and Z. Lu, Nanotechn. 19, 025706-1 (2008).Google Scholar
  3. 3.
    Z. J. Chen, H. Y. Xiao, X. T. Zu, et al., Comput. Mater. Sci. 42, 653 (2008).CrossRefGoogle Scholar
  4. 4.
    M. A. Subramanian and A. W. Sleight, Handbook Phys. Chem. Rare Earths, Ed. by K. A. Gschneidner, Jr. and L. Eyring, Vol. 16, Ch. 107, p. 225 (1993).CrossRefGoogle Scholar
  5. 5.
    M. G. Brik and A. M. Srivastava, J. Am. Ceram. Soc. 95, 1454 (2012).CrossRefGoogle Scholar
  6. 6.
    Z. Qu, C. Wan, and W. Pan, Acta Mater. 60, 2939 (2012).CrossRefGoogle Scholar
  7. 7.
    C. G. Whinerry, J. Am. Chem. Soc. 83, 755 (1961).Google Scholar
  8. 8.
    B. J. Kennedy, B. A. Hunter, and C. J. Howard, J. Solid State Chem. 130, 58 (1997).CrossRefGoogle Scholar
  9. 9.
    K. Matsuhira, Y. Hinatsu, K. Tenya, et al., J. Phys.: Condens. Matter 12, L649 (2000).Google Scholar
  10. 10.
    H. Kadowaki, Y. Ishii, K. Matsuhira, et al., Phys. Rev. 65, 14421-1 (2002).CrossRefGoogle Scholar
  11. 11.
    G. Ehlers, A. Huq, S. O. Liallo, et al., J. Phys.: Condens. Matter 24, 076005-1 (2012).Google Scholar
  12. 12.
    V. Bondah-Jagalu and S. T. Bramwell, Can. J. Phys. 79, 1381 (2001).CrossRefGoogle Scholar
  13. 13.
    L. T. Denisova, L. A. Irtyugo, V. V. Beletskii, et al., Fiz. Tverd. Tela 58, 1259 (2016).Google Scholar
  14. 14.
    V. M. Denisov, L. T. Denisova, L. A. Irtyugo, et al., Fiz. Tverd. Tela 52, 1274 (2010).Google Scholar
  15. 15.
    L. A. Solovyov, J. Appl. Crystallogr. 37, 743 (2004).CrossRefGoogle Scholar
  16. 16.
    J. Leitner, P. Chuchvalec, D. Sedmidubsky, et al., Thermochim. Acta 395, 27 (2003).CrossRefGoogle Scholar
  17. 17.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1232) [in Russian].Google Scholar
  18. 18.
    L. A. Reznitskii, Calorimetry of Solids (MGU, Moscow, 1981) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. T. Denisova
    • 1
  • L. A. Irtyugo
    • 1
  • Yu. F. Kargin
    • 2
  • V. M. Denisov
    • 1
  • V. V. Beletskii
    • 1
  1. 1.Institute of Nonferrous Metals and Materials ScienceSiberian Federal UniversityKrasnoyarskRussia
  2. 2.Baikov Institute of Metallurgy and Material SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations