Russian Journal of Inorganic Chemistry

, Volume 62, Issue 6, pp 715–722 | Cite as

SiO2 and TiO2 nanoparticles in Aerosol OT reverse microemulsions: Synthesis and characterization

  • M. G. Demidova
  • N. O. Shaparenko
  • T. Yu. Podlipskaya
  • A. I. Bulavchenko
Synthesis and Properties of Inorganic Compounds
  • 30 Downloads

Abstract

Stable SiO2 and TiO2 organosols were prepared by hydrolyzing tetraethyl orthosilicate (TEOS) in the presence of 6–12 M NH3 and titanium(IV) isopropylate (TTIP) in reverse microemulsions of 0.12–0.25 M bis(2-ethylhexyl) sulfosuccinate (Aerosol OT, AOT) in n-decane with the aqueous pseudophase content of 2–3 vol %, 0.018–0.090 M TEOS, and 0.15–0.55 vol %, 0.003–0.025 M TTIP. The degree of hydrolysis was monitored by IR spectroscopy (for TEOS) and spectrophotometry (for TTIP). Oxide nanoparticles were characterized by photon-correlation spectroscopy (PCS) (D h = 8–100 nm) and laser electrophoresis (ζ-potential = 7.4–11.6 mV). The occurrence of surface potential made it possible to separate the oxides from the excess of surfactant by nonaqueous electrophoresis and to determine particle sizes (7–40 nm) by means of transmission electron microscopy (TEM).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Nooney, C. O’Conell, R. Shibsekhar, et al., Sens. Actuators B 221, 470 (2015).CrossRefGoogle Scholar
  2. 2.
    A. Burns, H. Ow, and U. Wiesner, Chem. Soc. Rev. 35, 1028 (2006).CrossRefGoogle Scholar
  3. 3.
    A. Corma, Chem. Rev. 97, 2373 (1997).CrossRefGoogle Scholar
  4. 4.
    G. Sivalingam, K. Nagaveni, M. S. Hedge, and G. Madras, Appl. Catal. B: Environ. 45, 23 (2003).CrossRefGoogle Scholar
  5. 5.
    B. J. Jankiewicz, D. Jamila, J. Choma, and M. Jaroniec, Adv. Colloid Interface Sci. 170, 28 (2012).CrossRefGoogle Scholar
  6. 6.
    M. A. Petruska, A. P. Bartko, and V. I. Klimov, J. Am. Chem. Soc. 126, 714 (2004).CrossRefGoogle Scholar
  7. 7.
    A. I. Bulavchenko and D. N. Pletnev, J. Phys. Chem. 112, 16365 (2008).Google Scholar
  8. 8.
    A. I. Bulavchenko and P. S. Popovetsky, Langmuir 26, 736 (2010).CrossRefGoogle Scholar
  9. 9.
    S. Kuo and F. J. Osterle, J. Colloid Interface Sci. 25, 421 (1967).CrossRefGoogle Scholar
  10. 10.
    A. I. Bulavchenko, A. A. Sap’yanik, M. G. Demidova, et al., Russ. J. Phys. Chem. 89, 826 (2015).CrossRefGoogle Scholar
  11. 11.
    F. J. Arriagada and K. Psseo-Asare, J. Colloid Interface Sci. 170, 8 (1995).CrossRefGoogle Scholar
  12. 12.
    S. H. Chung, D. W. Lee, M. S. Kim, and K. Y. Lee, J. Colloid Interface Sci. 355, 70 (2011).CrossRefGoogle Scholar
  13. 13.
    J. Jang and H. Yoon, Adv. Mater. 16, 799 (2004).CrossRefGoogle Scholar
  14. 14.
    C. Tao and J. Li, Colloids Surf. A 256, 57 (2005).CrossRefGoogle Scholar
  15. 15.
    A. Gordon and R. Ford, The Chemist’s Companion, A Handbook of Practical Data. Techniques and References (Wiley, New York, 1972).Google Scholar
  16. 16.
    B. Ginzberg and S. A. Bilmes, Prog. Colloid Polym. Sci. 102, 51 (1996).CrossRefGoogle Scholar
  17. 17.
    P. D. Moran, J. R. Bartlett, G. A. Bowmaker, et al., J. Sol-Gel. Sci. Technol. 15, 251 (1999).CrossRefGoogle Scholar
  18. 18.
    E. Statos, H. Choi, and D. D. Dionysion, Environ. Eng. Sci. 24, 13 (2007).CrossRefGoogle Scholar
  19. 19.
    C. Wang, L. Chun-yan, Y. Wang, and T. Shen, J. Colloid Interface Sci. 197, 126 (1998).CrossRefGoogle Scholar
  20. 20.
    R. P. Bagve, L. R. Hilliardi, and W. Tan, Langmuir 22, 4357 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Bash, S. Strnads, and V. Ribitsch, Colloids Surf. A 333, 163 (2009).CrossRefGoogle Scholar
  22. 22.
    A. I. Bulavchenko and P. S. Popovetskiy, Langmuir 30, 12729 (2014).CrossRefGoogle Scholar
  23. 23.
    P. S. Popovetskiy, A. I. Bulavchenko, M. G. Demidova, and T. Yu. Podlipskaya, J. Struct. Chem. 56, 357 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. G. Demidova
    • 1
  • N. O. Shaparenko
    • 1
  • T. Yu. Podlipskaya
    • 1
  • A. I. Bulavchenko
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations