Problems of Information Transmission

, Volume 54, Issue 1, pp 1–19 | Cite as

Strong Converse for the Feedback-Assisted Classical Capacity of Entanglement-Breaking Channels

Information Theory
  • 4 Downloads

Abstract

Quantum entanglement can be used in a communication scheme to establish a correlation between successive channel inputs that is impossible by classical means. It is known that the classical capacity of quantum channels can be enhanced by such entangled encoding schemes, but this is not always the case. In this paper, we prove that a strong converse theorem holds for the classical capacity of an entanglement-breaking channel even when it is assisted by a classical feedback link from the receiver to the transmitter. In doing so, we identify a bound on the strong converse exponent, which determines the exponentially decaying rate at which the success probability tends to zero, for a sequence of codes with communication rate exceeding capacity. Proving a strong converse, along with an achievability theorem, shows that the classical capacity is a sharp boundary between reliable and unreliable communication regimes. One of the main tools in our proof is the sandwiched Rényi relative entropy. The same method of proof is used to derive an exponential bound on the success probability when communicating over an arbitrary quantum channel assisted by classical feedback, provided that the transmitter does not use entangled encoding schemes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 1991.CrossRefMATHGoogle Scholar
  2. 2.
    El Gamal, A. and Kim, Y.-H., Network Information Theory, Cambridge: Cambridge Univ. Press, 2011.CrossRefMATHGoogle Scholar
  3. 3.
    Holevo, A.S., The Capacity of the Quantum Channel with General Signal States, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 269–273.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Schumacher, B. and Westmoreland, M.D., Sending Classical Information via Noisy Quantum Channels, Phys. Rev. A, 1997, vol. 56, no. 1, pp. 131–138.CrossRefGoogle Scholar
  5. 5.
    Hastings, M.B., Superadditivity of Communication Capacity Using Entangled Inputs, Nat. Phys., 2009, vol. 5, no. 4, pp. 255–257.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Horodecki, M., Shor, P.W., and Ruskai, M.B., Entanglement Breaking Channels, Rev. Math. Phys., 2003, vol. 15, no. 6, pp. 629–641.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Shor, P.W., Additivity of the Classical Capacity of Entanglement-Breaking Quantum Channels, J. Math. Phys., 2002, vol. 43, no. 9, pp. 4334–4340.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bowen, G. and Nagarajan, R., On Feedback and the Classical Capacity of a Noisy Quantum Channel, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 1, pp. 320–324.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hayashi, M., Error Exponent in Asymmetric Quantum Hypothesis Testing and Its Application to Classical-Quantum Channel Coding, Phys. Rev. A, 2007, vol. 76, no. 6, p. 062301.CrossRefGoogle Scholar
  10. 10.
    Wolfowitz, J., Coding Theorems of Information Theory, Berlin: Springer, 1978, 3rd ed.CrossRefMATHGoogle Scholar
  11. 11.
    Arimoto, S., On the Converse to the Coding Theorem for Discrete Memoryless Channels, IEEE Trans. Inform. Theory, 1973, vol. 19, no. 3, pp. 357–359.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ogawa, T. and Nagaoka, H., Strong Converse to the Quantum Channel Coding Theorem, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2486–2489.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Winter, A., Coding Theorem and Strong Converse for Quantum Channels, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2481–2485.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Koenig, R. and Wehner, S., A Strong Converse for Classical Channel Coding Using Entangled Inputs, Phys. Rev. Lett., 2009, vol. 103, no. 7, p. 070504.CrossRefGoogle Scholar
  15. 15.
    Wilde, M.M., Winter, A., and Yang, D., Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy, Comm. Math. Phys., 2014, vol. 331, no. 2, pp. 593–622.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bardhan, B.R., García-Patrón, R., Wilde, M.M., and Winter, A., Strong Converse for the Classical Capacity of All Phase-Insensitive Bosonic Gaussian Channels, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 4, pp. 1842–1850.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nagaoka, H., Strong Converse Theorems in Quantum Information Theory, Asymptotic Theory of Quantum Statistical Inference: Selected Papers, Hayashi, M., Ed., Singapore: World Sci., 2005, pp. 64–65.CrossRefGoogle Scholar
  18. 18.
    Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., and Tomamichel, M., On Quantum Rényi Entropies: A New Generalization and Some Properties, J. Math. Phys., 2003, vol. 54, no. 12, p. 122203.CrossRefMATHGoogle Scholar
  19. 19.
    King, C., Maximal p-Norms of Entanglement Breaking Channels, Quantum Inf. Comput., 2003, vol. 3, no. 2, pp. 186–190.MathSciNetMATHGoogle Scholar
  20. 20.
    Mosonyi, M. and Hiai, F., On the Quantum Rényi Relative Entropies and Related Capacity Formulas, IEEE Trans. Inform. Theory, 2011, vol. 57, no. 4, pp. 2474–2487.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cooney, T., Mosonyi,M., and Wilde, M.M., Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication, Comm. Math. Phys., 2016, vol. 344, no. 3, pp. 797–829.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Umegaki, H., Conditional Expectation in an Operator Algebra, IV (Entropy and Information), Kōdai Math. Sem. Rep., 1962, vol. 14, no. 2, pp. 59–85.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Frank, R.L. and Lieb, E.H., Monotonicity of a Relative Rényi Entropy, J. Math. Phys., 2013, vol. 54, no. 12, p. 122201.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Beigi, S., Sandwiched Rényi Divergence Satisfies Data Processing Inequality, J. Math. Phys., 2013, vol. 54, no. 12, p. 122202.CrossRefMATHGoogle Scholar
  25. 25.
    Ohya, M., Petz, D., and Watanabe, N., On Capacities of Quantum Channels, Probab. Math. Statist., 1997, vol. 17, no. 1, pp. 179–196.MathSciNetMATHGoogle Scholar
  26. 26.
    Schumacher, B. and Westmoreland, M.D., Optimal Signal Ensembles, Phys. Rev. A, 2001, vol. 63, no. 2, p. 022308.CrossRefGoogle Scholar
  27. 27.
    Schumacher, B. and Westmoreland, M.D., Relative Entropy in Quantum Information Theory, Quantum Computation and Information (Proc. AMS Special Session, Jan. 19–21, 2000, Washington, DC), Lomonaco, S.J., Jr. and Brandt, H.E., Eds., Providence, RI: Amer. Math. Soc., 2002, pp. 265–290.Google Scholar
  28. 28.
    Holevo, A.S., Multiplicativity of p-Norms of Completely Positive Maps and the Additivity Problem in Quantum Information Theory, Uspekhi Mat. Nauk, 2006, vol. 61, no. 2 (368), pp. 113–152 [Russian Math. Surveys (Engl. Transl.), 2006, vol. 61, no. 2, pp. 301–339].MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sion, M., On General Minimax Theorems, Pacific J. Math., 1958, vol. 8, no. 1, pp. 171–176.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Audenaert, K.M.R., A Note on the p → q Norms of 2-PositiveMaps, Linear Algebra Appl., 2009, vol. 430, no. 4, pp. 1436–1440.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Bennett, C.H., Devetak, I., Shor, P.W., and Smolin, J.A., Inequalities and Separations among Assisted Capacities of Quantum Channels, Phys. Rev. Lett., 2006, vol. 96, no. 15, p. 150502.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Smith, G. and Smolin, J.A., Extensive Nonadditivity of Privacy, Phys. Rev. Lett., 2009, vol. 103, no. 12, p. 120503.CrossRefGoogle Scholar
  33. 33.
    Korbicz, J.K., Horodecki, P., and Horodecki, R., Quantum-Correlation Breaking Channels, Broadcasting Scenarios, and Finite Markov Chains, Phys. Rev. A, 2012, vol. 86, no. 4, p. 042319.CrossRefGoogle Scholar
  34. 34.
    Polyanskiy, Y. and Verdú, S., Arimoto Channel Coding Converse and Rényi Divergence, in Proc. 48th Annual Allerton Conf. on Communication, Control, and Computation, Sept. 29–Oct. 1, 2010, Allerton, IL, USA, pp. 1327–1333.Google Scholar
  35. 35.
    Mosonyi, M. and Ogawa, T., Strong Converse Exponent for Classical-Quantum Channel Coding, Comm. Math. Phys., 2017, vol. 355, no. 1, pp. 373–426.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Augustin, U., Noisy Channels, Habilitation Thesis, Univ. Erlangen-Nürnberg, Germany, 1978.Google Scholar
  37. 37.
    Dueck, G. and Körner, J., Reliability Function of a Discrete Memoryless Channel at Rates above Capacity, IEEE Trans. Inform. Theory, 1979, vol. 25, no. 1, pp. 82–85.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Csiszár, I. and Körner, J., Feedback Does Not Affect the Reliability Function of a DMC at Rates above Capacity, IEEE Trans. Inform. Theory, 1982, vol. 28, no. 1, pp. 92–93.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Brádler, K., Hayden, P., Touchette, D., and Wilde, M.M., Trade-off Capacities of the Quantum Hadamard Channels, Phys. Rev. A, 2010, vol. 81, no. 6, p. 062312.CrossRefGoogle Scholar
  40. 40.
    Wilde, M.M., Quantum Information Theory, Cambridge: Cambridge Univ. Press, 2017, 2nd ed.CrossRefMATHGoogle Scholar
  41. 41.
    Fannes, M., A Continuity Property of the Entropy Density for Spin Lattice Systems, Comm. Math. Phys., 1973, vol. 31, no. 4, pp. 291–294.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Audenaert, K.M.R., A Sharp Continuity Estimate for the von Neumann Entropy, J. Phys. A, 2007, vol. 40, no. 28, pp. 8127–8136.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Tomamichel, M., Wilde, M.M., and Winter, A., Strong Converse Rates for Quantum Communication, IEEE Trans. Inform. Theory, 2017, vol. 63, no. 1, pp. 715–727.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsStanford UniversityStanfordUSA
  2. 2.Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations