Skip to main content
Log in

Genetic characterization of Brycon hilarii (Characiformes) populations within the Pantanal: Aspects of their conservation within a globally important neotropical wetland

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Brycon hilarii, a characid species endemic to the Upper Paraguay hydrographic basin, is important to regional artisanal and sports fisheries. To develop effective strategies for conservation of this species in the face of potential environmental changes in the Pantanal region, we characterized genetic structuring within and among six B. hilarii collections based on variation at five microsatellite DNA markers. Within-population genetic variability was high, with 75 different alleles; mean average allelic richness per locus per sample location ranged from 6.06 to 7.99. Nei’s gene diversity (hs) varied among drainages from 0.66 (±0.2) to 0.69 (±0.2), with an average across the four genetically identified populations of 0.68 (±0.02). Analyses of Jost’s D EST and F ST-like indices, AMOVA, and Structure-based clustering analyses indicated that B. hilarii populations exhibit a low level of genetic structure, with some indications that the Taquari River population is somewhat distinct from others. Results of K-means analysis suggested little or no structuring, with weakly differentiated populations above and below the confluence of the Paraguay and Taquari rivers. Because B. hilarii populations in the Pantanal are linked by high levels of gene flow, habitat alterations that would interfere with gene flow may jeopardize the long-term persistance of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alho, C.J.R, Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation, Braz. J. Biol., 2008, vol. 68, no. 4, suppl., pp. 957–966.

    Article  CAS  PubMed  Google Scholar 

  • Alho, C.J.R. and Sabino, J.A, Conservation agenda for the Pantanal’s biodiversity, Braz. J. Biol., 2011, vol. 71, no. 1, pp. 327–335.

    Article  CAS  PubMed  Google Scholar 

  • Alho, C.J.R. and Sabino, J, Seasonal Pantanal flood pulse: implications for biodiversity conservation—a review, Oecol. Austral., 2012, vol. 16, no. 4, pp. 958–978.

    Article  Google Scholar 

  • Allendorf, F.W. and Phelps, S.R, Loss of genetic variation in a hatchery stock of cutthroat trout, Trans. Am. Fish. Soc., 1980, vol. 109, no. 5, pp. 537–543.

    Article  Google Scholar 

  • Assine, M.L, River avulsions on the Taquari megafan, Pantanal wetland, Brazil, Geomorphology, 2005, vol. 70, nos. 3–4, pp. 357–371.

    Article  Google Scholar 

  • Barroso, R.M., Hilsdorf, A.W.S., Moreira, H.L., Mello, A.M., Guimarães, S.E., Cabello, P.H., and Traub-Cseko, Y.M, Identification and characterization of microsatellites loci in Brycon opalinus, Mol. Ecol. Notes, 2003, vol. 3, no. 2, pp. 297–298.

    Article  CAS  Google Scholar 

  • Britski, H.A., de Silimon, K.Z., and Lopes, B.S., Peixes do Pantanal—Manual de Identificação, Corumbá: Embrapa,2007, 2nd ed.

    Google Scholar 

  • Calcagnotto, D., and DeSalle, R, Population genetic structuring in pacu (Piaractus mesopotamicus) across the Paraná-Paraguay basin: evidence from microsatellites, Neotrop. Ichthyol., 2009, vol. 7, no. 4, pp. 607–616.

    Article  Google Scholar 

  • Carvalho-Costa, L.F., Hatanaka, T., and Galetti, P.M, Jr., Evidence of lack of population substructuring in the Brazilian freshwater fish Prochilodus costatus, Genet. Mol. Biol., 2008, vol. 31, no. 1, pp. 377–380.

    CAS  Google Scholar 

  • Catella, A.C., A Pesca no Pantanal Sul: Situação Atual e Perspectivas. Embrapa Pantanal, Documentos 48, Corumbá, 2003. http://www.cpap.embrapa.br/ublicacoes/online/ DOC48.pdf. Accessed February 10, 2014.

  • Catella, A.C., Albuquerque, S.P., Campos, F.LR., and Santos, D.C., Sistema de Controle da Pesca de Mato Grosso do Sul—SCPESCA/MS 18–2011, Corumbá: Embrapa Pantanal, 2013, 2013. http://www.cpap.embrapa.br/publicacoes/ online/BP123.pdf. Accessed February 10, 2014.

    Google Scholar 

  • Catella, A.C., Albuquerque, S.P., Campos, F.L.R., and Santos, D.C, Sistema de Controle da Pesca de Mato Grosso do Sul SCPESCA/MS 20–2013, Corumbá: Embrapa Pantanal, 2014. http://www.cpap.embrapa.br/publicacoes/ online/BP127.pdf. Accessed August 10, 2015.

    Google Scholar 

  • Cunha, C.N. and Junk, W.J., A preliminary classification of habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international wetland classification systems, in The Pantanal: Ecology, Biodiversity, and Sustainable Management of a Large Neotropical Seasonal Wetland, Junk, W.J., da Silva, C.J., Cunha, N.C., and Wantzen, K.M., Eds., Moscow: Pensoft, 2009, pp. 127–141.

    Google Scholar 

  • Dewoody, J.A., and Avise, J, Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals, J. Fish. Biol., 2000, vol. 56, no. 3, pp. 461–473.

    CAS  Google Scholar 

  • Esguícero, A.L.H., and Arcifa, M.S, Fragmentation of a Neotropical migratory fish population by a century-old dam, Hydrobiologia, 2010, vol. 638, no. 1, pp. 41–53.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., and Goudet, J, Detecting the number of clusters of individuals using the software structure: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L. and Lischer, H.E.L, Arlequin suite, ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, no. 3, pp. 564–567.

    PubMed  Google Scholar 

  • Excoffier. L., Smouse, P.E., and Quattro, J.M, Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, vol. 131, no. 2, pp. 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaggiotti, O.E., Lange, O., Rassmann, K., and Gliddon, C., A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data, Mol. Ecol., 1999, vol. 8, no. 9, pp. 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, G., Jueterbock, A., Kraemer, P., Deppermann, J., and Harmand, P., Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol. Ecol., 2010, vol. 19, no. 18, pp. 3845–3852.

    Article  PubMed  Google Scholar 

  • Goudet, J., FSTAT: a computer program to calculate F-statistics (version 2.9.3.2.), J. Hered., 2002, vol. 86, no. 6, pp. 485–486.

    Article  Google Scholar 

  • Guo, S.W. and Thompson, E.A, Performing the exact test of Hardy–Weinberg proportions for multiple alleles, Biometrics, 1992, vol. 48, no. 2, pp. 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Iervolino, F., de Resende, E.K., and Hilsdorf, A.W.S, The lack of genetic differentiation of pacu (Piaractus mesopotamicus) populations in the Upper-Paraguay Basin revealed by the mitochondrial DNA D-loop region: implications for fishery management, Fish. Res., 2010, vol. 101, nos. 1–2, pp. 27–31.

    Article  Google Scholar 

  • Jost, L., GST and its relatives do not measure differentiation, Mol. Ecol., 2008, vol. 17, no. 18, pp. 4015–4026.

    Article  PubMed  Google Scholar 

  • Junk, W.J, The flood pulse concept of large rivers: learning from the tropics, Arch. Hydrobiol., Suppl., Large Rivers, 1999, vol. 11, no. 3, pp. 261–280.

    Google Scholar 

  • Junk, W.J. and Cunha, C.N, Pantanal: a large South American wetland at a crossroads, Ecol. Eng., 2005, vol. 24, no. pp. 391–401.

    Article  Google Scholar 

  • Kalinowski, S.T., HW-QUICKCHECK: an easy-to-use computer program for checking genotypes for agreement with Hardy-Weinberg expectations, Mol. Ecol. Notes, 2006, vol. 6, no. 4, pp. 974–979.

    Article  Google Scholar 

  • Loverde-Oliveira, S.M., Huszar, V.L., and Fantin-Cruz, I, Implications of the flood pulse on morphometry of a Pantanal lake (Mato Grosso state, Central Brazil), Acta Limnol. Bras., 2007, vol. 19, no. 4, pp. 453–461.

    Google Scholar 

  • Mantel, N, The detection of disease clustering and generalized regression approach, Cancer Res., 1967, vol. 27, no. 2, pp. 209–220.

    CAS  PubMed  Google Scholar 

  • Maruyama, T. and Kimura, M, Some methods for treating continuous stochastic processes in population genetics, Jpn. J. Genet., 1971, vol. 46, no. 6, pp. 407–410.

    Article  Google Scholar 

  • Mateus, L.A. and Estupiñan, G.M, Fish stock assessment of piraputanga Brycon microlepis in the Cuiabá River basin, Pantanal of Mato Grosso, Brazil, Braz. J. Biol., 2002, vol. 62, no. 1, pp. 165–170.

    Article  Google Scholar 

  • Meirman, P.G., AMOVA-based clustering of population genetic data, J. Hered., 2012, vol. 103, no. 5, pp. 744–750.

    Article  Google Scholar 

  • Mills, L.S. and Allendorf, F.W, The one-migrant–per–generation rule in conservation and management, Conserv. Biol., 1996, vol. 10, no. 6, pp. 1509–1518.

    Article  Google Scholar 

  • Mitton, J.B. and Lewis, W.M, Relationships between genetic variability and life-history features of bony fishes, Evolution, 1989, vol. 43, no. 8, pp. 1712–1723.

    Article  PubMed  Google Scholar 

  • Moritz, C, Defining ‘Evolutionarily Significant Units’ for conservation, Trends Ecol. Evol., 1994, vol. 9, no. 10, pp. 373–375.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  • Pereira, L.H., Foresti, F., and Oliveira, C, Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behavior, Ecol. Freshwater Fish, 2009 vol. 18, no. 2, pp. 215–225.

    Article  Google Scholar 

  • Pritchard, J.K., Stephens, M., and Donnelly, P, Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porsani, J.L., Assine, M.L., and Moutinho, L, Application of GPR in the study of a modern alluvial megafan: the case of the Taquari River in Pantanal Wetland, west-central Brazil, Subsurf. Sens. Technol. Appl., 2005, vol. 6, no. 2, pp. 219–233.

    Article  Google Scholar 

  • Resende, E.K., Paraguay-Paraná Basin: excluding the Upper Paraná Basin, in Migratory Fishes of South America: Biology, Fisheries, and Conservation Status, Carolsfeld, J., Harvey, B., Ross, C., and Baer, A., Eds., Canada: World Fish. Trust, 2003, pp. 103–151.

    Google Scholar 

  • Reys, P., Sabino, J., and Galetti, M, Frugivory by the fish Brycon hilarii (Characidae) in western Brazil, Acta Oecol., 2009, vol. 35, no. 1, pp. 136–141.

    Article  Google Scholar 

  • Rice, W.R, Analyzing tables of statistical tests, Evolution, 1989, vol. 43, no. 1, pp. 223–225.

    Article  PubMed  Google Scholar 

  • Rousset, F., Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux, Mol. Ecol. Resour., 2008, vol. 8, no. 1, pp. 103–106.

    Article  PubMed  Google Scholar 

  • Sabino, J. and Andrade, L.P, Uso e conservação da ictiofauna no ecoturismo da região de bonito, Mato Grosso do Sul: o mito da sustentabilidade ecológica no rio baía bonita (aquário natural de bonito), Biota Neotrop., 2003, vol. 3, no. 2, pp. 1–9.

    Google Scholar 

  • Sanches, A. and Galetti, P.M, Microsatellites loci isolated in the freshwater fish Brycon hilarii, Mol. Ecol Notes, 2006, vol. 6, no. 4, pp. 1045–1046.

    Article  CAS  Google Scholar 

  • Sanches, A. and Galetti, P.M, Population genetic structure revealed by a school of the freshwater migratory fish, Brycon hilarii, Lat. Am. J. Aquat. Res., 2012, vol. 40, no. 2, pp. 408–417.

    Article  Google Scholar 

  • Santos, M.C., Ruffino, M.L., and Farias, I.P, High levels of genetic variability and panmixia of the tambaqui Colossoma macropomum (Cuvier, 1816) in the main channel of the Amazon River, J. Fish Biol., 2007, vol. 71, suppl., pp. 33–44.

    CAS  Google Scholar 

  • Schuelke, M, An economic method for the fluorescent labeling of PCR fragments, Nat. Biotechnol., 2000, vol. 18, no. 2, pp. 233–234.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, C.E, Estimating the dimension of a model, Ann. Stat., 1978, vol. 6, no. 2, pp. 461–464.

    Article  Google Scholar 

  • Slatkin, M, Gene flow in natural populations, Ann. Rev. Ecol. Syst., 1985, vol. 16, pp. 393–430.

    Article  Google Scholar 

  • van Oosterhout, C., Hutchinson, W.F., Wills, D.P., and Shipley, P., MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes, 2004, vol. 4, no. 3, pp. 535–538.

  • Walsh, M.R., Munch, S.B., Chiba, S., and Conover, D.O, Maladaptive changes in multiple traits caused by fishing: impediments to population recovery, Ecol. Lett., 2006, vol. 9, no. 2, pp. 142–148.

    Article  PubMed  Google Scholar 

  • Waples, R.S, Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species, J. Hered., 1998, vol. 89, no. 5, pp. 438–450.

    Article  Google Scholar 

  • Waples, R.S, Genetic approaches to the management of Pacific salmon, Fisheries, 1990, vol. 15, no. 5, pp. 19–25.

    Article  Google Scholar 

  • Weir, B.S. and Cockerham, C.C, Estimating F-statistics for the analysis of population structure, Evolution, 1984, vol. 38, no. 6, pp. 1358–1370.

    CAS  PubMed  Google Scholar 

  • Wilkinson, M.J., Marshall, L.G., and Lundberg, J.G, River behavior on megafans and potential influences on diversification and distribution of aquatic organisms, J. S. Am. Earth Sci., 2006, vol. 21, nos. 1–2, pp. 151–172.

    Article  Google Scholar 

  • Wright, S., Evolution and the Genetics of Population, Vol. 4: Variability Within and Among Natural Populations, Chicago: Univ. of Chicago Press, 1978.

    Google Scholar 

  • Yamamoto, S., Morita, K., Koizumi, I., and Maekawa, K, Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies, Conserv. Genet., 2004, vol 5, no. 4, pp. 529–538.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. S. Hilsdorf.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okazaki, T.I., Hallerman, E.M., de Resende, E.K. et al. Genetic characterization of Brycon hilarii (Characiformes) populations within the Pantanal: Aspects of their conservation within a globally important neotropical wetland. J. Ichthyol. 57, 434–444 (2017). https://doi.org/10.1134/S0032945217030092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945217030092

Keywords

Navigation