Advertisement

Journal of Ichthyology

, Volume 57, Issue 3, pp 458–466 | Cite as

Protective systems of immunocompetent organs in fishes from different ecological and systematic groups

  • T. B. Lapirova
  • E. A. Flerova
  • V. V. Yurchenko
  • A. A. Morozov
Article

Abstract

This article presents the results of analysis of parameters of the immune, antioxidant, and monooxygenase systems in the immunocompetent organs (pro- and mesonephros, spleen, and liver) of species belonging to different systematic and ecological groups, namely, northern pike Esox lucius, zander Sander lucioperca, and bream Abramis brama. Although having the same features in the functioning of homeostatic mechanisms in the species under study, significant differences were revealed between bream and another two species with respect to the parameters of the nonspecific immunity of tissues and enzyme systems that perform protective functions. In all the three species, the basic role in processes of immunopoesis and nonspecific protection is played by the kidneys and spleen, while the greatest values of the parameters of antioxidant defenses and ethoxyresorufin-O-deethylase activity were recorded in the liver.

Keywords

northern pike Esox lucius zander Sander lucioperca bream Abramisbrama immuncompetent organs innate immunity antioxidant system ethoxyresorufin-O-deethylase Rybinsk Reservoir 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyden, S, Natural antibodies and the immune response, Adv. Immunol., 1965, vol. 5, pp. 1–28.Google Scholar
  2. Di Giulio, R.T., Reactive oxygen species and oxidative stress, in The Toxicology of Fishes, Di Giulio, R.T. and Hinton, D.E., Eds.,New York: CRC, 2008, pp. 273–324.CrossRefGoogle Scholar
  3. Di Giulio, R.T., Benson, W.H., Sanders, B.M., and van Veld, P.A., Biochemical mechanisms: metabolism, adaptation, and toxicity, in Fundamentals of Aquatic Toxicology. Effects, Environmental Fate, and Risk Assessment, Rand, G.M., Ed., Washington, DC: Taylor and Francis, 1995, pp. 523–561.Google Scholar
  4. Ellis, A.E., Ontogeny of the immune system in teleost fish, in Fish Vaccination, Ellis, A.E., Ed., London: Academic, 1988, pp. 20–31.Google Scholar
  5. Flerova, E.A., Kletochnaya organizatsiya pochek kostistykh ryb(na primere otryadov Cypriniformes i Perciformes) (Cellular Organization of the Buds of Teleostei Fishes by Example of Orders CypriniformesandPerciformes), Yaroslavl: Yaroslavsk. Gos. S-kh. Akad., 2012.Google Scholar
  6. German, A.V., Zakonnov, V.V., and Mamontov, A.A, Organochlorine compounds in bottom sediments, benthos, and fish in the Volga pool of the Rybinsk Reservoir, Water Resour., 2010, vol. 37, no. 1, pp. 84–88.Google Scholar
  7. Grinevich, Yu.A. and Alferov, A.N, Analysis of immune complexes in the blood of patients with oncology, Lab. Delo, 1981, no. 8, pp. 493–496.Google Scholar
  8. Ilyukha, V.A, Superoxide dismutase and catalase in the organs of mammals of different ecogenesis, J. Evol. Biochem. Physiol., 2001, vol. 37, no. 3, pp. 241–245.CrossRefGoogle Scholar
  9. Ivanova, N.T., Sistema krovi. Materialy k sravnitel’noi morfologii sistemy krovi cheloveka i zhivotnykh (The Blood Systems. Comparative Morphology of the Blood Systems of a Man and Animals), Rostov-on-Don: Rostov. Gos. Pedagog. Univ., 2005.Google Scholar
  10. Kondrat’eva, I.A., Kitashova, A.A., and Lange, M.A, Modern concepts about immune system of fishes: Part 1. Organization of the immune system offishes, Vestn. Mosk. Univ., Ser. 16. Biol., 2001, no. 4, pp. 11–20.Google Scholar
  11. Luk’yanenko, V.I., Immunobiologiya ryb (Immunobiology of Fishes),Moscow: Pishchevaya Prom-st, 1989.Google Scholar
  12. Martinez-Alvarez, R.M., Morales, A.E., and Sanz, A, Antioxidant defenses in fish: biotic and abiotic factors, Rev. Fish Biol. Fish., 2005, vol. 15, no. 1, pp. 75–88.CrossRefGoogle Scholar
  13. Moron, M.S., Depierre, J.W., and Mannervik, B, Levels of glutathione, glutathione reductase and glutathione s-transferase activities in rat lung and liver, Biochim. Biophys. Acta, 1979, vol. 582, pp. 67–78.Google Scholar
  14. Morozov, A.A. and Yurchenko, V.V, Responses of hepatic biochemical markers in bream Abramis brama L. to dietary administered polychlorinated biphenyls, Contemp. Probl. Ecol., 2016, vol. 9, no. 1, pp. 78–85.CrossRefGoogle Scholar
  15. Nazarova, E.A. and Zabotkina, E.A, Specific features of the composition of leucocytes in the kidneys of some species of freshwater and marine bony fishes, Inland Water Biol., 2010, vol. 3, no. 2, pp. 187–192.CrossRefGoogle Scholar
  16. Nikol’skii, G.V., Chastnaya ikhtiologiya (Particular Ichthyology), Moscow: Vysshaya Shkola, 1971.Google Scholar
  17. Pacheco, M. and Santos, M.A, Tissue distribution and temperature-dependence of Anguilla anguilla L. EROD activity following exposure to model inducers and relationship with plasma cortisol, lactate, and glucose levels, Environ. Int., 2001, vol. 26, no. 3, pp. 149–155.PubMedGoogle Scholar
  18. Praktikum po immunologii: uchebnoe posobie (Practical Manual on Immunology), Kondrat’eva, I.A. and Samuilov, V.D., Eds., Moscow: Mosk. Gos. Univ., 2001.Google Scholar
  19. Rudneva, I.I, Ecological and physiological features of antioxidant system of fishes and lipid peroxidation, Usp. Sovrem. Biol., 2003, vol. 123, no. 4, pp. 391–400.Google Scholar
  20. Smith, S.A., Gebhard, D.H., Housman, J.M., et al., Isolation, purification, and molecular-weight determination of serum immunoglobulin from Oreochromis aureus, J. Aquat. Anim. Health, 1993, vol. 5, pp. 23–25.Google Scholar
  21. Smolowitz, R.M., Hahn, M.E., and Stegeman, J.J, Immunohistochemical localization of cytochrome P-450IA1 induced by 3,3’,4,4’-tetrachlorobiphenyl and by 2,3,7,8-tetrachlorodibenzoafuran in liver and extrahepatic tissues of the teleost Stenotomus chrysops (scup), Drug Metab. Dispos., 1991, vol. 19, no. 1, pp. 113–123.PubMedGoogle Scholar
  22. Soldatov, A.A., Gostyukhina, O.L., and Golovina, I.V, State of the antioxidant enzyme complex in tissues of the Black Sea mollusk Mytilus galloprovincialis under natural oxidative stress, J. Evol. Biochem. Physiol., 2008, vol. 44, no. 2, pp. 175–182.CrossRefGoogle Scholar
  23. Stegeman, J.J., Smolowitz, R.M., and Hahn, M.E, Immunohistochemical localization of environmentally induced cytochrome P450IA1 in multiple organs of the marine teleost Stenotomus chrysops (scup), Toxicol. Appl. Pharmacol., 1991, vol. 110, no. 3, pp. 486–504.CrossRefPubMedGoogle Scholar
  24. Taysse, L., Chambras, C., Marionnet, D., et al., Basal level and induction of cytochrome P450,EROD,UDPGT,and GST activities in carp (Cyprinus carpio) immune organs (spleen and head kidney), Bull. Environ. Contam. Toxicol., 1998, vol. 60, no. 2, pp. 300–305. doi 10.1007/s001289900625CrossRefPubMedGoogle Scholar
  25. Uribe, C., Folch, H., Enriquez, R., and Moran, G, Innate and adaptive immunity in teleost fish: a review, Vet. Med., 2011, vol. 56, pp. 486–503.Google Scholar
  26. Vehniäinen, E., Schultz, E., Lehtivuori, H., et al., More accuracy to the EROD measurements—the resorufin fluorescence differs between species and individuals, Aquat. Toxicol., 2012, vols. 116–117, pp. 102–108. doi 10.1016/j.aquatox.2012.03.007CrossRefPubMedGoogle Scholar
  27. Whyte, J.J., Jung, R.E., Schmitt, C.J., and Tillitt, D.E, Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure, Crit. Rev. Toxicol., 2000, vol. 30, no. 4, pp. 347–570.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. B. Lapirova
    • 1
  • E. A. Flerova
    • 2
  • V. V. Yurchenko
    • 1
  • A. A. Morozov
    • 1
  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia
  2. 2.Yaroslavl State Agricultural AcademyYaroslavlRussia

Personalised recommendations