The Effect of Graphene Additives on the Structure and Properties of Aluminum

Abstract

Using high-resolution scanning and transmission electron microscopy methods, the morphological and size characteristics of the structural components of the composites synthesized on the basis of aluminum with a graphene microadditive in a commercial aluminum melt under a layer of molten salt are studied. An experiment on the dynamic compression of a composite by the Kolsky method was performed, the evolution of a cast structure during high-rate deformation is studied, and mechanical characteristics in the range of deformation rates έ = 1.8–4.7 × 103 s–1 were measured. The dynamic characteristics of the composite were measured under conditions of loading with planar shock waves (έ = 5 × 105 s–1) for the first time. The dynamic properties of the composite are compared as functions of the graphene content in the aluminum matrix.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    A. A. Zabolotskii and S. E. Salibekov, “Development of Al–C composite materials,” Met. Sci. Heat Treat. 20, 841–844 (1978).

    Article  Google Scholar 

  2. 2

    Yu. A. Kvashnina, D. G. Kvashnin, A. G. Kvashnin, and P. B. Sorokin, “New allotropic forms of carbon based on C60 and C20 fullerenes with specific mechanical characteristics,” JETP Lett. 105, 419–425 (2017).

    CAS  Article  Google Scholar 

  3. 3

    K. Naplocha and K. Granat, “Dry sliding wear of Al/Saffil/C hybrid metal matrix composites,” Wear 265, 1734–1740 (2008).

    CAS  Article  Google Scholar 

  4. 4

    G. S. Bezruchko, S. V. Razorenov, and M. Yu. Popov, “Effect of a fullerene C60 addition on the strength properties of nanocrystalline copper and aluminum under shock-wave loading,” Tech. Phys. 59, 378–383 (2014).

    CAS  Article  Google Scholar 

  5. 5

    A. G. Kvashnin, L. A. Chernozatonsrii, B. I. Yakobson, and P. B. Sorokin, “Phase diagram of qasi-two-dimensional carbon,” Nano Lett. 14 (2), 18741–17745 (2014).

    Article  Google Scholar 

  6. 6

    A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, “Graphene: fabrication methods and thermophysical properties,” Phys.-Usp. 54, 227–258 (2011).

    CAS  Article  Google Scholar 

  7. 7

    L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, “Novel graphene-based nanostructures: physicochemical properties and applications,” Russ. Chem. Rev. 83, 251–279 (2014).

    Article  Google Scholar 

  8. 8

    J. Wang, Zh. Li, G. Fan, H. Pan, Zh. Chen, and D. Zhang, “Reinforcement with graphene nanosheets in aluminum matrix composites,” Scr. Mater. 66, 594–597 (2012).

    CAS  Article  Google Scholar 

  9. 9

    M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, Sh. Wang, X. Tang, and X. Wang, “Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering,” Composites, Part B 60, 111–118 (2014).

    CAS  Article  Google Scholar 

  10. 10

    M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progr. Nat. Sci.: Mater. Int. 24, 101–108 (2014).

    CAS  Article  Google Scholar 

  11. 11

    M. Fattahi, A. R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, and S. Akhavan, “Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires,” Micron 64, 20–27 (2014).

    CAS  Article  Google Scholar 

  12. 12

    R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” J. Alloys Compd. 615, 578–S582 (2014).

    Article  Google Scholar 

  13. 13

    J. L. Li, Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, and S. L. Dai, “Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling,” Mater. Sci. Eng. A 626, 400–405 (2015).

    CAS  Article  Google Scholar 

  14. 14

    S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, “Graphene–aluminum nanocomposites,” Mater. Sci. Eng., A 528, 7933–7937 (2011).

    CAS  Article  Google Scholar 

  15. 15

    L. A. Elshina and R. V. Muradymov, RF Patent No. 2623410, (2017).

  16. 16

    L. A. Yolshina, R. V. Muradymov, I. V. Korsun, G. A. Yakovlev, and S. V. Smirnov, “Novel aluminum–graphene and aluminum–graphite metallic composite materials: synthesis and properties,” J. Alloys Compd. 663, 449–459 (2016).

    CAS  Article  Google Scholar 

  17. 17

    M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen, and K. W. Jacobsen, “Graphene on metals: a van der Waals density functional study,” Phys. Rev. B 81, 081408 (2010).

    Article  Google Scholar 

  18. 18

    R. Sharma, N. Chadha, and P. Saini, “Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and Raman spectroscopy,” Indian J. Pure Appl. Phys. 55, 625–629 (2017).

    Google Scholar 

  19. 19

    A. N. Petrova, I. G. Brodova, O. A. Plekhov, O. B. Naimark, and E. V. Shorokhov, “Mechanical properties and energy dissipation in ultrafine-grained AMts and V95 aluminum alloys during dynamic compression,” Tech. Phys. 59, 989–996 (2014).

    CAS  Article  Google Scholar 

  20. 20

    A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019).

    CAS  Article  Google Scholar 

  21. 21

    N. S. Saenko and A. M. Ziatdinov, “Evaluation of the size of graphene nanoparticles from the X-ray diffraction spectra of activated carbon fibers without use of the Scherrer equation,” in Proceedings of the Eight International Conference “Carbon: Fundamental Problems in Science, Material Science, and Technology,” Abstracts of Papers (Troitsk, 2012), pp. 422–427.

  22. 22

    L. M. Barker and Hollenbach, R. E. “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to T.I. Yablonskikh and V.V. Astaf’ev for carrying out metallographic measurements, A.V. Kulikov for his assistance in conducting explosive experiments, and Z.I. Zav’yalov for testing samples using the Hopkinson-Kolsky method.

Funding

The study was performed within the framework of State assignment from the Russian Ministry of Education and Science (topic Structure, project nos. AAAA-A18-118020190116-6 and AAAA-A19-119071190040-5). Electron microscopy studies were carried out in Center for Collective Use Testing Center for Nanotechnologies and Advanced Materials at the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences. The shock-wave compression experiments were carried out using the equipment of the Moscow Regional Explosive Center for Collective Use of the Russian Academy of Sciences. The Raman spectra of graphene were recorded in Center for Collective Use Substance Composition at the Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. G. Brodova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirinkina, I.G., Brodova, I.G., Rasposienko, D.Y. et al. The Effect of Graphene Additives on the Structure and Properties of Aluminum. Phys. Metals Metallogr. 121, 1193–1202 (2020). https://doi.org/10.1134/S0031918X21010117

Download citation

Keywords:

  • graphene
  • structure
  • dynamic properties
  • transmission electron microscopy
  • high resolution
  • hardness