Transmission of Microwaves through Magnetic Metallic Nanostructures

Abstract

The penetration of decimeter, centimeter, and millimeter electromagnetic waves through magnetic metallic nanostructures is considered in this work. Detailed information on the microwave giant magnetoresistive effect is presented. The manifestations of ferromagnetic and spin-wave resonances upon the transmission of microwaves through nanostructures are considered.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.

REFERENCES

  1. 1

    M. N. Baibich, J. M. Broto, A. Fert, Van Dau F. Nguyen, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 6, No. 21, 2472–2475 (1988).

    Article  Google Scholar 

  2. 2

    G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, 4828–4830 (1989).

    CAS  Article  Google Scholar 

  3. 3

    Magnetic Nanostructures, Spin Dynamics and Spin Transport, Ed. by H. Zabel and M. Farle (Springer, Berlin, 2013).

    Google Scholar 

  4. 4

    X. Zhang and W. Butler, in Handbook of Spintronics, Ed. by Y. Xu, D. D. Awschalom, and J. Nitta (Springer, Dordrecht, 2016).

    Google Scholar 

  5. 5

    A. Fert, " Origin, development and prospects of spintronics," Usp. Fiz. Nauk 178, No. 12, 1336–1348 (2008).

    Article  Google Scholar 

  6. 6

    Ultrathin Magnetic Structures, Ed. by B. Heinrich and J. A. C. Bland (Springer, 2005) ed. IV, Vol. 161–163, p. 257.

    Google Scholar 

  7. 7

    J. J. Krebs, P. Lubitz, A. Chaiken, and G. A. Prinz, “Magnetoresistance origin for nonresonant microwave absorption in antiferromagnetically coupled epitaxial Fe/Cr/Fe(001) sandwiches, J. Appl. Phys. 69, No. 8. Pt. II, 4795–4797 (1991).

  8. 8

    B. K. Kuanr, A. V. Kuanr, P. Grunberg, and G. Nimtz, “Swept-frequency FMR on Fe/Cr trilayer ultrathin films—microwave giant magnetoresistance,” Phys. Lett. 221, Nos. 3–4, 245–252 (1996).

    CAS  Article  Google Scholar 

  9. 9

    V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and V. I. Minin, “Correlation between microwave transmission and giant magnetoresistance in Fe/Cr superlattice,” J. Magn. Magn. Mater. 177181, 1205–1206 (1998).

    Article  Google Scholar 

  10. 10

    J. C. Jackuet and T. Valet, Mater. Res. Soc. Symp. Proc. Magnetic Ultrathin Films, Multilayers and Surfaces, USA, San Francisco, (April 1995), (Pittsburgh, Pennsylvania, 1995) Vol. 384, p. 477.

  11. 11

    V. V. Ustinov, A. B. Rinkevich, and L. N. Romashev, “Microwave GMR In Magnetic Metallic Multilayers,” In Giant Magnetoresistance: New Research, Ed. by A. D. Torres and D. A. Perez, (Nova Science, 2009), p. 289.

    Google Scholar 

  12. 12

    V. V. Ustinov, N. G. Bebenin, L. N. Romashev, V. I. Minin, M. A. Milyaev, A. R. Del, and A. V. Semerikov, “Magnetoresistance and magnetization of Fe/Cr (001) superlattices with noncollinear magnetic ordering,” Phys. Rev. B 54, No. 22, 19958–19966 (1996).

  13. 13

    P. Bruno, “Theory of interlayer magnetic coupling,” Phys. Rev. B 52, 411–439 (1995).

    CAS  Article  Google Scholar 

  14. 14

    S. S. P. Parkin, R. Bhadra, and K. P. Roche, “Oscillatory magnetic exchange coupling through thin copper layers,” Phys. Rev. Lett. 66, 2152 (1991).

    CAS  Article  Google Scholar 

  15. 15

    S. S. P. Parkin, “Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals,” Phys. Rev. Lett. 67, 3598 (1991).

    CAS  Article  Google Scholar 

  16. 16

    S. S. P. Parkin, N. Moore, and K. P. Roche, “Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr,” Phys. Rev. Lett. 64, No. 19, 2304–2307 (1990).

    CAS  Article  Google Scholar 

  17. 17

    W. Kuch, A. C. Marley, and S. S. P. Parkin, “Seeded epitaxy of Co90Fe10/Cu multilayers on MgO(001): Influence of Fe seed layer thickness,” J. Appl. Phys. 83, No. 9, 4709–4713 (1998).

    CAS  Article  Google Scholar 

  18. 18

    S. S. P. Parkin, “Magneto-transport in transition metal multilayered structures,” A symposium in memory of Allan Mackintosh,” Copenhagen (Denmark), 26–29 August 1996 (Matematisk-Fysiske Meddelelser, 1997) Vol. 45, pp. 113–132.

  19. 19

    Y. Yang, J. -G. Zhu, R. M. White, and M. Asheghi, “Field-dependent thermal and electrical transports in Cu/CoFe multilayer,” J. Appl. Phys. 99, 063703 (2006).

    Article  CAS  Google Scholar 

  20. 20

    N. S. Bannikova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, I. Yu. Kamenskii, and V. V. Ustinov, “Giant magnetoresistance of CoFe/Cu superlattices with the (Ni80Fe20)60Cr40 buffer layer,” Phys. Met. Metallogr. 116, No.10, 1040–1046 (2015).

    CAS  Google Scholar 

  21. 21

    D. M. Edwards, J. Mathon, R. B. Muniz, and M. S. Phan, “Oscillations in the exchange coupling of ferromagnetic layers separated by a nonmagnetic metallic layer,” J. Phys.: Condens. Matter 3, No. 26, 4941–4958 (1991).

    CAS  Google Scholar 

  22. 22

    J. Bass and W. P. Pratt, “Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers,” J. Magn. Magn. Mater. 200, 274–289 (1999).

    CAS  Article  Google Scholar 

  23. 23

    A. Vedyayev, M. Chshiev, N. Ryzhanova, B. Dieny, C. Cowache, and F. Brouers, “A unified theory of CIP and CPP giant magnetoresistance in magnetic sandwiches,” J. Magn. Magn. Mater. 172, Nos. 1–2, 53–60 (1997).

    CAS  Article  Google Scholar 

  24. 24

    R. E. Camley and J. Barnaś, “Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling,” Phys. Rev. Lett. 63, No. 6, 664–667 (1989).

    CAS  Article  Google Scholar 

  25. 25

    P. M. Levy, S. Zhang, and A. Fert, “Electrical conductivity of magnetic multilayered structures,” Phys. Rev. Lett. 65, No. 13, 1643–1646 (1990).

    CAS  Article  Google Scholar 

  26. 26

    R. E. Camley and R. L. Stamps, “Magnetic multilayers: spin configurations, excitations and giant magnetoresistance,” J. Phys.: Condens. Matter 5, No. 23, 3727–3786 (1993).

    CAS  Google Scholar 

  27. 27

    T. Valet and A. Fert, “Theory of the perpendicular magnetoresistance in magnetic multilayers,” Phys. Rev. B 48, No. 10, 7099–7113 (1993).

    CAS  Article  Google Scholar 

  28. 28

    V. V. Ustinov and E. A. Kravtsov, “A unified semiclassical theory of parallel and perpendicular giant magnetoresistance in metallic superlattices,” J. Phys.: Condens. Matter 7, No. 18, 3471–3484 (1995).

    CAS  Google Scholar 

  29. 29

    Molecular Beam Epitaxy and Heterostructures, Ed. by L. L. Chang and K. Ploog (Springer, 1985).

    Google Scholar 

  30. 30

    S. Gangopadhyay, J. X. Shen, M. T. Kief, J. A. Barnard, and M. R. Parker, “Giant magnetoresistance in CoFe/Cu multilayers with different buffer layers and substrates,” IEEE Trans. Magn. 31, No. 6, 3933–3935 (1995).

    CAS  Article  Google Scholar 

  31. 31

    M. A. Milyaev, L. I. Naumova, and V. V. Ustinov, “Exchange-coupled superlattices with record magnetoresistance,” Phys. Met. Metallogr. 119, No. 12, 1162–1166 (2018).

    CAS  Article  Google Scholar 

  32. 32

    V. Lauter-Pasyuk, H. J. Lauter, B. Toperverg, O. Nikonov, E. Kravtsov, L. Romashev, and V. Ustinov, “Magnetic neutron off-specular scattering for the direct determination of the coupling angle in exchange-coupled multilayers,” J. Magn. Magn. Mater. 226230, Part 2, 1694–1696 (2001).

    Article  Google Scholar 

  33. 33

    V. Lauter-Pasyuk, H. J. Lauter, B. Toperverg, O. Nikonov, E. Kravtsov, M. Milyaev, and V. Ustinov, “Magnetic off-specular neutron scattering from Fe/Cr multilayers,” Phys. B: Condens. Matter 263, 194–198 (2000).

    Article  Google Scholar 

  34. 34

    A. B. Rinkevich, D. V. Perov, E. A. Kuznetsov, and V. V. Ustinov, “Spin-wave resonance in (Fe0.82Ni0.18)/V nanostructure,” J. Exp. Theor. Phys. 129, 911–9236 (2019).

    CAS  Article  Google Scholar 

  35. 35

    A. B. Drovosekov, O. V. Zhotikova, N. M. Kreines, V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev, V. V. Ustinov, and D. I. Kholin, “Inhomogeneous ferromagnetic resonance modes in [Fe/Cr]n superlattices with a high biquadratic exchange constant,” J. Exp. Theor. Phys. 89, 986–994 (1999).

    CAS  Article  Google Scholar 

  36. 36

    A. B. Drovosekov, N. M. Kreines, D. I. Kholin, V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, “Ferromagnetic resonance in multilayer [Fe/Cr]n structures with noncollinear magnetic ordering,” JETP Lett. 67, 727–732 (1998).

    Article  Google Scholar 

  37. 37

    S. O. Demokritov, A. B. Drovosekov, N. M. Kreines, Kh. Nembakh, M. Rikart, and D. I. Kholin, “Interlayer interaction in a Fe/Cr/Fe system: Dependence on the thickness of the chrome interlayer and on temperature,” J. Exp. Theor. Phys. 95, 1062–1073 (2002).

    CAS  Article  Google Scholar 

  38. 38

    N. M. Kreines, “Investigation of interlayer interaction in magnetic multilayer structures [Fe/Cr]n by the method of ferromagnetic resonance,” Fiz. Nizk. Temp. 28, No. 8/9, 807–821 (2002).

    Google Scholar 

  39. 39

    A. B. Rinkevich, M. A. Milyaev, and L. N. Romashev, “Ferromagnetic resonance and interlayer exchange coupling in (Fe/Cr)n superlattices,” Phys. Met. Metallogr. 120, No. 3, 247–253 (2019).

    CAS  Article  Google Scholar 

  40. 40

    M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, A. M. Burkhanov, N. S. Bannikova, and V. V. Ustinov, “Giant changes in magnetic and magnetoresistive properties of CoFe/Cu multilayers at subnanosized variations in the thickness of the chromium buffer layer,” Phys. Met. Metallogr. 112, No. 2, 138–145 (2011).

    Article  Google Scholar 

  41. 41

    A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, “Magnon spintronics,” Nat. Phys. 11, 453–461 (2015).

    CAS  Article  Google Scholar 

  42. 42

    B. Divinskiy, V. E. Demidov, S. O. Demokritov, A. B. Rinkevich, and S. Urazhdin, “Route toward high-speed nano-magnonics provided by pure spin currents,” Appl. Phys. Lett. 109, No. 25 (2016).

  43. 43

    S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotskii, V. K. Sakharov, and E. S. Pavlov, “Magnonics: A new research area in spintronics and spin wave electronics,” Phys. Usp. 185, No. 10, 1002–1028 (2015).

    Article  Google Scholar 

  44. 44

    Ch. Pool, Electron Spin Resonance. Comprehensive Treatise on Experimental Techniques (Interscience Publishers, Wiley, New York, 1967).

    Google Scholar 

  45. 45

    J. Stankowski, F. Stobiecki, and M. Gorska, “Application of magnetically modulated microwave absorption to study of giant magnetoresistance effect in the Ni–Fe/Cu multilayer system,” Appl. Magn. Reson. 24, 303–311 (2003).

    CAS  Article  Google Scholar 

  46. 46

    C. T. Boone, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Spin-scattering rates in metallic thin films measured by ferromagnetic resonance damping enhanced by spin-pumping,” J. Appl. Phys. 117, 223910 (2015).

    Article  CAS  Google Scholar 

  47. 47

    S. Mizukami, Y. Ando, and T. Miyazaki, “Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films,” Phys. Rev. B 66, 104413 (2002).

    Article  CAS  Google Scholar 

  48. 48

    M. Kostylev, “Waveguide-based ferromagnetic resonance measurements of metallic ferromagnetic films in transmission and reflection,” J. Appl. Phys. 113, 053908 (1–5) (2013).

  49. 49

    S. Sangita Kalarickal, P. Krivosik, W. Mingzhong, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, “Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods,” J. Appl. Phys. 99, 093909 (2006).

    Article  CAS  Google Scholar 

  50. 50

    R. L. Ramey and T. S. Lewis, “Properties of thin metal films at microwave frequencies,” J. Appl. Phys. 39, 1747–1751 (1968).

    CAS  Article  Google Scholar 

  51. 51

    I. V. Antonets, L. N. Kotov, S. V. Nekipelov, and E. N. Karpushov, “Conducting and reflecting properties of thin metal films,” Tech. Phys. 11, 1496–1500 (2004).

    Article  CAS  Google Scholar 

  52. 52

    A. B. Rinkevich, L. N. Romashev, and V. V. Ustinov, “Radiofrequency magnetoresistance of Fe/Cr superlattices,” J. Exp. Theor. Phys. 90, 834–841 (2000).

    CAS  Article  Google Scholar 

  53. 53

    A. Rinkevich, A. Nossov, V. Ustinov, V. Vassiliev, and S. Petukhov, “Penetration of the electromagnetic waves through doped lanthanum manganites,” J. Appl. Phys. 91, No. 6, 3693–3697 (2002).

    CAS  Article  Google Scholar 

  54. 54

    A. B. Rinkevich, L. N. Romashev, V. V. Ustinov, and E. A. Kuznetsov, “High frequency properties of magnetic multilayers,” J. Magn. Magn. Mater. 254255, 603–607 (2003).

    Article  Google Scholar 

  55. 55

    T. Rausch, T. Szczurek, and M. Schlesinger, “High frequency giant magnetoresistance in evaporated Co/Cu multilayers deposited on Si (110) and Si (100),” J. Appl. Phys. 85, No. 1, 314–318 (1999).

    CAS  Article  Google Scholar 

  56. 56

    A. B. Rinkevich and L. N. Romashev, “Non-contact measurement of microwave magnetoresistance of metal multilayers,” Radiotekhnika i elektronika 44, No. 5, 557–560 (1999).

    Google Scholar 

  57. 57

    Z. Frait, P. Sturc, K. Temst, Y. Bruynseraede, and I. Vavra, “Microwave and d.c. differential giant magnetoresistance study of iron/chromium superlattices,” Solid State Commun. 112, 569–573 (1999).

    CAS  Article  Google Scholar 

  58. 58

    V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, “Reflection of electromagnetic waves from Fe/Cr nanostructures,” Pis’ma Zh. Tekh. Fiz. 33, 23–31 (2007).

    Google Scholar 

  59. 59

    D. E. Endean, J. N. Heyman, S. Maat, and E. Dan Dahlberg, “Quantitative analysis of the giant magnetoresistance effect at microwave frequencies,” Phys. Rev. B 84, 212405 (2011).

    Article  CAS  Google Scholar 

  60. 60

    M. M. Kirillova, I. D. Lobov, V. M. Maevskii, A. A. Makhnev, E. I. Shreder, V. I. Minin, L. N. Romashev, A. V. Semerikov, A. R. Del’, and V. V. Ustinov, “Optical, magneto-optical properties, and giant magnetoresistance of Fe/Cr superlattices with noncollinear ordering of iron layers,” Zh. Eksp. Teor. Fiz. 109, No. 2, 477–494 (1996).

    Google Scholar 

  61. 61

    I. D. Lobov, M. M. Kirillova, L. N. Romashev, M. A. Milyaev, and V. V. Ustinov, “Magnetorefractive effect and giant magnetoresistance in Fe(t x)/Cr superlattices,” Phys. Solid State 51, No. 12, 2480–2485 (2009).

    CAS  Article  Google Scholar 

  62. 62

    V. V. Ustinov, Yu. P. Sukhorukov, M. A. Milyaev, A. B. Granovskii, A. N. Yurasov, E. A. Gan’shina, and A. V. Telegin, “Magnetotransmission and magnetoreflection in multilayer Fe/Cr nanostructures,” J. Exp. Theor. Phys. 108, 260–266 (2009).

    CAS  Article  Google Scholar 

  63. 63

    I. D. Lobov, M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov, “Parameters of Fe/Cr interfacial electron scattering from infrared magnetoreflection,” Phys. Rev. B 81, No. 13, 134436 (6) (2010).

  64. 64

    A. B. Rinkevich, D. V. Perov, V. O. Vas’kovskii, and V. N. Lepalovskii, “Regularities of penetration of electromagnetic waves through metal magnetic films,” Tech. Phys. 54, 1339–1349 (2009).

    CAS  Article  Google Scholar 

  65. 65

    A. G. Gurevich and G. A. Melkov, Magnetic Vibrations and Waves (Nauka, Moscow, 1994).

    Google Scholar 

  66. 66

    V. V. Ustinov, “High frequency impedance of magnetic superlattices showing giant magnetoresistance,” J. Magn. Magn. Mater. 165, No. 1–3, 125–127 (1997).

    CAS  Article  Google Scholar 

  67. 67

    N. A. Semenov, Technical Electrodynamics (Svyaz’, Moscow, 1972) [in Russian].

    Google Scholar 

  68. 68

    L. M. Brekhovskikh, Waves in Layered Media (Izdatel’stvo akademii nauk SSSR, Moscow, 1957) [in Russian].

  69. 69

    A. B. Rinkevich, M. I. Samoilovich, S. M. Klescheva, D. V. Perov, A. M. Burkhanov, and E. A. Kuznetsov, “Millimeter-wave properties and structure of gradient Co–Ir films deposited on opal matrix,” IEEE Trans. Nanotechnol. 13, No. 1, 3–9 (2014).

    CAS  Article  Google Scholar 

  70. 70

    A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, “Electromagnetic waves in a rectangular waveguide with a metallic nanostructure,” Radiotekhnika i Elektronika 49, No. 1, 48–53 (2004).

    Google Scholar 

  71. 71

    V. V. Ustinov, A. B. Rinkevich, and L. N. Romashev, “Interaction of electromagnetic waves with iron-chromium multilayer nanostructures,” Tech. Phys. 50, 484–490 (2005).

    CAS  Article  Google Scholar 

  72. 72

    V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and D. V. Perov, “Giant magnetoresistance of iron-chromium superlattices at microwaves,” Tech. Phys. 49, No. 5, 613–618 (2004).

    CAS  Article  Google Scholar 

  73. 73

    A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, “Measurement of high-frequency giant magnetoresistance of nanostructures in the traveling wave mode,” Radiotekhnika i Elektronika 51, No. 1, 93–99 (2006).

    Google Scholar 

  74. 74

    A. B. Rinkevich, L. N. Romashev, V. V. Ustinov, and E. A. Kuznetsov, “Rectangular waveguide with metallic nanostructure driven by magnetic field,” Int. J. Infrared Millimeter Waves. 28, 567–578 (2007).

    Article  Google Scholar 

  75. 75

    A. B. Rinkevich, M. A. Milyaev, L. N. Romashev, and D. V. Perov, “Microwave giant magnetoresistance effect in metallic nanostructures,” Phys. Met. Metallogr. 119, 1297–1300 (2018).

    CAS  Article  Google Scholar 

  76. 76

    V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, M. A. Milyaev, A. M. Burkhanov, N. N. Sidun, and E. A. Kuznetsov, “Penetration of electromagnetic fields through multilayered and cluster-layered Fe/Cr nanostructures,” Phys. Met. Metallogr. 99, No. 5, 486–497 (2005).

    Google Scholar 

  77. 77

    V. V. Ustinov, L. N. Romashev, M. A. Milayev, A. V. Korolev, T. P. Krinitsina, and A. M. Burkhanov, “Kondo-like effect in the resistivity of superparamagnetic cluster-layered Fe/Cr nanostructures,” J. Magn. Magn. Mater. 300, 148–152 (2006).

    CAS  Article  Google Scholar 

  78. 78

    A. B. Rinkevich, V. V. Ustinov, L. N. Romashev, M. A. Milyaev, N. N. Sidun, and E. A. Kuznetsov, “High-frequency properties of Fe/Cr superlattices with thin Cr layers in the millimeter-wavelength range,” Tech. Phys. 58, No. 7, 1073–1079 (2013).

    CAS  Article  Google Scholar 

  79. 79

    V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, A. M. Burkhanov, and E. A. Kuznetsov, “Giant magnetoresistive effect in Fe/Cr multilayers in a wide range of frequencies,” Phys. Met. Metallogr. 96, No. 3, 291–297 (2003).

    Google Scholar 

  80. 80

    D. P. Belozorov, V. N. Derkach, S. V. Nedukh, A. G. Ravlik, S. T. Roschenko, I. G. Shipkova, S. I. Tarapov, and F. Yildiz, “High-frequency magnetoresonance and magnetoimpedance in Co/Cu mltilayers with variable interlayer thickness,” Int. J. Infrared and Millimeter Waves 22, No. 11, 1669–1682 (2001).

    CAS  Article  Google Scholar 

  81. 81

    S. S. P. Parkin, “Magneto-transport in transition metal multilayered structures,” A symposium in memory of Allan Mackintosh, Copenhagen (Denmark), 26–29 August 1996 (Matematisk-Fysiske Meddelelser, 1997), Vol. 45, pp. 113–132.

  82. 82

    A. B. Rinkevich, Ya. A. Pakhomov, E. A. Kuznetsov, A. S. Klepikova, M. A. Milyaev, L. I. Naumova, and V. V. Ustinov, “Microwave giant magnetoresistance in [CoFe/Cu]n superlattices with record-high magnetoresistance,” Pis’ma Zh. Tekh. Fiz. 45, 42–44 (2019).

    Google Scholar 

  83. 83

    B. Hjörvarsson, J. A. Dura, P. Isberg, T. Watanabe, T. J. Udovic, G. Andersson, and C. F. Majkrzak, “Reversible tuning of the magnetic exchange coupling in Fe/V(001) superlattices using hydrogen,” Phys. Rev. Lett. 79, No. 5, 901–904 (1997).

    Article  Google Scholar 

  84. 84

    D. Labergerie, C. Sutter, H. Zabel, and B. Hjörvarsson, “Hydrogen induced changes of the interlayer coupling in Fe(3)/V(x) superlattices (x = 11–16),” J. Magn. Magn. Mater. 192, 238–246 (1999).

    CAS  Article  Google Scholar 

  85. 85

    A. B. Rinkevich, D. V. Perov, E. A. Kuznetsov, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, “Microwave penetration through (Fe0.82Ni0.18)/V superlattices,” J. Magn. Magn. Mater. 493, 165700 (2020).

    CAS  Article  Google Scholar 

  86. 86

    A. B. Granovskii, A. A. Kozlov, T. V. Bagmut, S. V. Nedukh, S. I. Tarapov, and J.-P. Clerc, “Microwave-frequency spin-dependent tunneling in nanocomposites,” Phys. Solid State 47, 738–741 (2005).

    Article  CAS  Google Scholar 

  87. 87

    A. Rinkevich, L. Romashev, M. Milyaev, E. Kuztetsov, M. Angelakeris, and P. Poulopoulos, “Electromagnetic waves penetration and magnetic properties of AgPt/Co nanostructures,” J. Magn. Magn. Mater. 317, No. 1–2, 15–19 (2007).

    CAS  Article  Google Scholar 

  88. 88

    V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, “Giant magnetoresistive effect and magnetic resonance in the reflection of electromagnetic waves from Fe-Cr nanostructures,” Tech. Phys. 54, 1156–1161 (2009).

    CAS  Article  Google Scholar 

  89. 89

    V. V. Ustinov, A. B. Rinkevich, and L. N. Romashev, “Microwave magnetoresistance of Fe/Cr multilayers in current-perpendicular-to-plane geometry,” J. Magn. Soc. Jpn. 23, Nos. 1–2, 114–116 (1999).

    CAS  Article  Google Scholar 

  90. 90

    V. V. Ustinov, A. B. Rinkevich, and L. N. Romashev, “Microwave magnetoresistance of Fe/Cr multilayers in current-perpendicular-to-plane geometry,” J. Magn. Magn. Mater. 198199, No. 6, 82–84 (1999).

    Article  Google Scholar 

  91. 91

    V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, M. Angelakeris, and N. Vourttsis, “Microwave magnetoresistance of Fe/Cr superlattices for currents passing perpendicular to the plane of layers,” Phys. Met. Metallogr. 93, No. 5, 422–428 (2002).

    Google Scholar 

  92. 92

    J. Al’tman, UHF Devices (Mir, Moscow, 1968) [in Russian].

  93. 93

    D. V. Perov and A. B. Rinkevich, “Frequency dependence of microwave giant magnetoresistive effect in the magnetic metallic nanostructures,” Phys. Met. Metallogr. 120, No. 4, 3333–338 (2019).

    Article  Google Scholar 

  94. 94

    M. Farle, “Ferromagnetic resonance of ultrathin metallic layers,” Rep. Prog. Phys. 61, No. 7, 755–826 (1998).

    CAS  Article  Google Scholar 

  95. 95

    K. Lenz, H. Wende, W. Kuch, K. Baberschke, K. Nagy, and A. Jánossy, “Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets,” Phys. Rev. B 73, 144424 (1–6) (2006).

  96. 96

    I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, and C. H. Back, “Comparison of frequency, field, and time domain ferromagnetic resonance methods,” J. Magn. Magn. Mater. 307, 148–156 (2006).

    CAS  Article  Google Scholar 

  97. 97

    S. O. Demokritov, A. B. Drovosekov, D. I. Kholin, N. M. Kreines, H. Nembach, and M. Rickart, “Temperature dependence of interlayer coupling in Fe/Cr/Fe wedge samples: static and dynamic studies,” J. Magn. Magn. Mater. 272276, 963–965 (2004).

    Article  CAS  Google Scholar 

  98. 98

    N. G. Bebenin, A. V. Kobelev, A. P. Tankeyev, and V. V. Ustinov, “Magnetic resonance frequencies in multilayers with biquadratic exchange and non-collinear magnetic ordering,” J. Magn. Magn. Mater. 165, Nos. 1–3, 468–470 (1997).

    CAS  Article  Google Scholar 

  99. 99

    N. G. Bebenin, A. V. Kobelev, A. P. Tankeev, and V. V. Ustinov, “FMR frequencies in multilayers with noncollinear magnetic ordering, Phys. Met. Metallogr. 82, No. 4, 348–353 (1996).

    Google Scholar 

  100. 100

    A. B. Drovosekov, D. I. Kholin, N. M. Kreines, V. F. Meshcheryakov, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, “Non-uniform FMR modes in [Fe/Cr]n superlattices with strong biquadratic exchange,” Fiz. Met. Metalloved. 91, 38–41 (2001).

    Google Scholar 

  101. 101

    E. M. Kogan, E. A. Turov, and V. V. Ustinov, “Passage impedance of ferromagnetic metal film,” Fiz. Met. Metalloved. 53, No. 2, 223–229 (1982).

    Google Scholar 

  102. 102

    R. Urban, B. Heinrich, G. Woltersdorf, K. Ajdari, K. Myrtle, J. F. Cochran, and E. Rozenberg, “Nanosecond magnetic relaxation processes in ultrathin metallic films prepared by MBE,” Phys. Rev. B 65, No. 5, 020402–4 (2001).

    Article  CAS  Google Scholar 

  103. 103

    R. Urban, G. Woltersdorf, and B. Heinrich, “Gilbert damping in single and multilayer ultrathin films: role of interfaces in nonlocal spin dynamics,” Phys. Rev. Lett. 87, No. 21, 217204–4 (2001).

    CAS  Article  Google Scholar 

  104. 104

    R. Arias and D. I. Mills, “Extrinsic contributions to the ferromagnetic resonance response of ultrathin films,” Phys. Rev. B 60, No. 10, 7395–7409 (1999).

    CAS  Article  Google Scholar 

  105. 105

    M. H. Seavey and P. E. Tannewald, “Direct observation of spin-wave resonance,” Phys. Rev. Lett. 1, No. 5, 168–169 (1958).

    CAS  Article  Google Scholar 

  106. 106

    R. S. Iskhakov, S. V. Stolyar, M. V. Chizhik, and L. A. Chekanova, “Spin-wave resonance in multilayer films (one-dimensional magnon crystals). Identification rules,” JETP Lett. 94, 301–305 (2011).

    CAS  Article  Google Scholar 

  107. 107

    I. G. Vazhenina, R. S. Iskhakov, and L. A. Chekanova, “Spin-wave resonance in chemically deposited fe-ni films: measuring the spin-wave stiffness and surface anisotropy constant”, Phys. Solid State 60, 292–298 (2018).

    CAS  Article  Google Scholar 

  108. 108

    A. Hamadeh, O. Kelly d' Allivy, C. Hahn, H. Meley, R. Bernard, A. H. Molpeceres, V. V. Naletov, M. Viret, A. Anane, V. Cros, S. O. Demokritov, J. L. Prieto, M. Munoz, G. de Loubens, and O. Klein, “Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque,” Phys. Rev. Lett. 113, 197203(1–5) (2014).

  109. 109

    B. Divinsky, V. E. Demidov, S. Urazhdin, R. Freeman, A. B. Rinkevich, and S. O. Demokritov, “Excitation and amplification of spin waves by spin-orbit torque,” Adv. Mater. 30, No. 33, 1802837 (2018).

    Article  CAS  Google Scholar 

  110. 110

    C. E. Patton, “Classical theory of spin-wave dispersion for ferromagnetic metals,” Czech J. Phys. 26, No. 8, 925–935 (1976).

    Article  Google Scholar 

  111. 111

    B. A. Kalinikos and A. N. Slavin, “Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions,” J. Phys. C 19, 7013–7033 (1986).

    Article  Google Scholar 

  112. 112

    V. A. Ignatchenko and R. S. Iskhakov, “Dispersion relation and spin-wave spectroscopy of amorphous ferromagnets,” Zh. Eksp. Teor. Fiz. 75, No. 4, 1438–1443 (1978).

    CAS  Google Scholar 

  113. 113

    N. G. Bebenin and V. V. Ustinov, “Spin waves in superlattices with biquadratic exchange,” Phys. Met. Metallogr. 84, No. 2, 112–117 (1997).

    Google Scholar 

  114. 114

    N. G. Bebenin and V. V. Ustinov, “Spin-wave frequencies in a superlattice with biquadratic exchange in a magnetic field,” Phys. Met. Metallogr. 89, No. 3, 225–229 (2000).

    Google Scholar 

  115. 115

    R. E. De Wames and T. Wolfram, “Spin-wave resonance in conducting films: parallel resonance,” Jpn. J. Appl. Phys. 13, No. 1, 68–78 (1974).

    Article  Google Scholar 

  116. 116

    W. S. Ament and G. T. Rado, “Electromagnetic effects of spin wave resonances in ferromagnetic metals,” Phys. Rev. 97, No. 6, 1558–1566 (1955).

    CAS  Article  Google Scholar 

  117. 117

    M. I. Kaganov and L. Yui, “Influence of the boundary condition for the magnetic moment on the spin-wave resonance in a metal,” Izv. AN SSSR. Cer. Fiz. 25, No. 11, 1375–1378 (1961).

    CAS  Google Scholar 

  118. 118

    A. B. Rinkevich, D. V. Perov, and V. O. Vaskovsky, “Types of magnetic resonances in electromagnetic wave penetration through thin magnetic films,” Phys. Scr. 83, 015705(13) (2011).

  119. 119

    D. V. Perov, A. B. Rinkevich, and S. O. Demokritov, “Eigenmodes in thin ferromagnetic film under ferromagnetic resonance and spin-wave resonance conditions at different spin pinning,” Phys. Scr. 91, 025802(14) (2016).

  120. 120

    A. B. Rinkevich, D. V. Perov, E. A. Kuznetsov, and M. A. Milyaev, “Changes in the microwave refractive index caused by the giant magnetoresistive effect,” Dokl. Phys. 64, No. 8, 316–318 (2019).

    CAS  Article  Google Scholar 

  121. 121

    A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365–389 (2005).

    Article  Google Scholar 

  122. 122

    J. Daughton, “Magnetoresistive Random Access Memory (MRAM),” https://www.nve.com/Downloads/mram.pdf/ Copyright © 2/4/2000.

Download references

Funding

This work was carried out within the state assignment of the Ministry of Education and Science of the Russian Federation (topics “Spin” no. AAAA-A18-118020290104-2 and “Function” no. AAAA-A19-119012990095-0). The work on Sections 10–12 was supported by the Russian Science Foundation (grant no. 17-12-01002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. B. Rinkevich.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rinkevich, A.B., Kuznetsov, E.A., Milyaev, M.A. et al. Transmission of Microwaves through Magnetic Metallic Nanostructures. Phys. Metals Metallogr. 121, 1137–1167 (2020). https://doi.org/10.1134/S0031918X2012011X

Download citation

Keywords:

  • metallic nanostructures
  • giant magnetoresistive effect
  • microwaves