Evolution of Structure of Cu–Nb Composite under High-Pressure Torsion and Subsequent Annealing

Abstract—

The evolution of structure of a multicore in situ Cu-18Nb composite under high-pressure torsion (HPT) by one, three, and five anvil revolutions was investigated by scanning and transmission electron microscopy, and microhardness measurements. Thermal stability of the HPT deformed structure was studied after annealings in the 300–800°C temperature range. The combined use of repeated cold drawing and HPT made it possible to refine the structure and thereby to obtain equiaxed grains with a size of 10–30 nm, which sharply increased the microhardness (to 4800 MPa). Under the subsequent annealing the nanocrystalline structure is retained and; the microhardness remains considerably higher than that of the composite not subjected to HPT. Thus, the combination of repeated cold drawing with further high-pressure torsion provided substantial strengthening and higher thermal stability of the composite in comparison with niobium and copper nanostructured by severe plastic deformation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Y. T. Zhu, T. C. Lowe, and T. G. Langdon, “Performance and applications of nanostructured materials produced by severe plastic deformation,” Scr. Mater. 51, No. 8, 825–830 (2004).

    CAS  Article  Google Scholar 

  2. 2

    M. Kawasaki and T. G. Langdon, “Principles of superplasticity in ultrafine-grained materials,” J. Mater. Sci. 42, 1782–1796 (2007).

    CAS  Article  Google Scholar 

  3. 3

    A. Hohenwarter, C. Kammerhofer, and R. Pippan, “The ductile to brittle transition of ultrafine-grained Armco iron: an experimental study,” J. Mater Sci. 45, 4805–4812 (2010). https://doi.org/10.1007/s10853-010-4635-9

    CAS  Article  Google Scholar 

  4. 4

    R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” JOM 58, No. 4, 33–39 (2006).

    Article  Google Scholar 

  5. 5

    Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).

    CAS  Article  Google Scholar 

  6. 6

    A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    CAS  Article  Google Scholar 

  7. 7

    V. P. Pilyugin, T. M. Gapontseva, T. I. Chashukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, No. 4, 409–419 (2008).

    Article  Google Scholar 

  8. 8

    V. V. Popov, E. N. Popova, A. V. Stolbovskiy, and V. P. Pilyugin, “Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures,” Mater. Sci. Eng., A 528, 1491–1496 (2011).

    Article  Google Scholar 

  9. 9

    D. K. Orlova, T. I. Chashchukhina, L. M. Voronova, and M. V. Degtyarev, “Effect of temperature–strain-rate conditions of deformation on structure formation in commercially pure copper deformed in bridgman anvils,” Phys. Met. Metallogr. 116, No. 9, 951–958 (2015).

    Article  Google Scholar 

  10. 10

    C. O. Rogachev, A. B. Rozhnov, S. A. Nikulin, O. V. Rybal’chenko, M. V. Gorshenkov, V. T. Chzhen, and S. V. Dobatkin, “Effect of torsion conditions under high pressure on the structure and strengthening of the Zr–1% Nb alloy,” Phys. Met. Metallogr. 117, No. 4, 371–377 (2016).

    CAS  Article  Google Scholar 

  11. 11

    R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, “Saturation of fragmentation during severe plastic deformation,” Ann. Rev. Mater. Res. 40, 319–343 (2010).

    CAS  Article  Google Scholar 

  12. 12

    P. V. Kuznetsov, T. V. Rakhmatulina, I. V. Belyaeva, and A. V. Korznikov, “ Energy of internal interfaces as a characteristic of the structural evolution of ultrafine-grained copper and nickel after annealing,” Phys. Met. Metallogr. 118, No. 3, 241–248 (2017).

    CAS  Article  Google Scholar 

  13. 13

    V. V. Rybin, N. Yu. Zolotorevskii, and E. A. Ushanova, “Fragmentation of crystals upon deformation twinning and dynamic recrystallization,” Phys. Met. Metallogr. 116, No. 7, 730–744 (2015).

    Article  Google Scholar 

  14. 14

    P. Bazarnik, Y. Huang, M. Lewandowska, and T. G. Langdon, “Enhanced grain refinement and microhardness by hybrid processing using hydrostatic extrusion and high-pressure torsion,” Mater. Sci. Eng., A 712, 513–520 (2018).

    CAS  Article  Google Scholar 

  15. 15

    L. Krämer, S. Wurster, and R. Pippan, “Deformation behavior of Cu-composites processed by HPT,” IOP Conf. Ser.: Mater. Sci. Eng. 63, 012026 (9 pp) (2014).

  16. 16

    V. Pantsyrny, A. Shikov, N. Khlebova, V. Drobishev, N. Kozlenkova, M. Polikarpova, N. Belyakov, O. Kukina, and V. Dmitriev, “The nanostructured high strength high conductivity Cu matrix composites with different bcc metals strengthening filaments,” IEEE Trans. Appl. Supercond. 20, No. 3, 1614–1618 (2010).

    CAS  Article  Google Scholar 

  17. 17

    A. Shikov, V. Pantsyrnyi, A. Vorobieva, N. Khlebova, and A. Silaev, “High strength, high conductivity Cu‒Nb based conductors with nanoscaled microstructure,” Phys. C 354, No. 1–4, 410–414 (2001).

    CAS  Article  Google Scholar 

  18. 18

    K. Edalati, T. Fujioka, and Z. Horita, “Microstructure and mechanical properties of pure Cu processed by high-pressure torsion,” Mater. Sci. Eng., A 497, 168–173 (2008).

    Article  Google Scholar 

  19. 19

    T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, and D. K. Pokryshkina, “Deformation and dynamic recrystallization in copper at different deformation rates in bridgman anvils,” Phys. Met. Metallogr. 111, 304–313 (2011).

    Article  Google Scholar 

  20. 20

    A. V. Stolbovskii, V. V. Popov, E. N. Popova, and V. P. Pilyugin, “Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures,” Bull. Russ. Acad. Sci.: Phys. 78, 1150–1159 (2014).

    Google Scholar 

  21. 21

    V. V. Popov, E. N. Popova, A. V. Stolbovskii, V. P. Pilyugin, and N. K. Arkhipova, “ Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained,” Phys. Met. Metallogr. 113, No. 3, 295–301 (2012).

    Article  Google Scholar 

  22. 22

    T. M. Gapontseva, M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, L. M. Voronova, and A. M. Patselov, “Effect of temperature of HPT deformation and the initial orientation on the structural evolution in single-crystal niobium,” Phys. Met. Metallogr. 117, No. 4, 336–347 (2016).

    CAS  Article  Google Scholar 

  23. 23

    V. Pantsyrny, A. Shikov, A. Vorobieva, N. Khlebova, N. Kozlenkova, I. Potapenko, and M. Polikarpova, “Stability aspects of the high strength high conductivity microcomposite Cu–Nb wires properties,” IEEE Trans. Appl. Supercond. 16, No. 2, 1656–1659 (2006).

    CAS  Article  Google Scholar 

  24. 24

    I. L. Deryagina, E. N. Popova, E. G. Valova-Zakharevskaya, and E. I. Patrakov, “Structure and thermal stability of high-strength Cu–18Nb composite depending on the degree of deformation,” Phys. Met. Metallogr. 119, No. 1, 92–102 (2018).

    CAS  Article  Google Scholar 

  25. 25

    Y. L. Wang, K. Han, Y. Huang, and K. Y. Zhang, “Microstructure in Cu–Nb microcomposites,” Mater. Sci. Eng., A 351, 214–223 (2003).

    Article  Google Scholar 

  26. 26

    L. Deng, K. Han, K. T. Hartwig, T. M. Siegrist, L. Dong, Z. Sun, X. Yang, and Q. Liu, “Hardness, electrical resistivity, and modeling of in situ Cu–Nb microcomposites,” J. Alloys Compd. 602, 331–338 (2014).

    CAS  Article  Google Scholar 

  27. 27

    E. H. Ekiz, T. G. Lach, R. S. Averback, N. A. Mara, I. J. Beyerlein, M. Pouryazdan, H. Hahn, and P. Bellon, “Microstructural evolution of nanolayered Cu–Nb composites subjected to high-pressure torsion,” Acta Mater. 72, 178–191 (2014).

    CAS  Article  Google Scholar 

  28. 28

    X. Quelennec, A. Menand, J. M. Le Breton, R. Pippan, and X. Sauvage, “Homogeneous Cu–Fe supersaturated solid solutions prepared by severe plastic deformation,” Philos. Mag. 90, No. 9, 1179–1195 (2010).

    CAS  Article  Google Scholar 

  29. 29

    R. Lapovok, V. V. Popov, Y. Qi, A. Kosinova, A. Berner, C. Xu, E. Rabkin, R. Kulagin, J. Ivanisenko, B. Baretzky, O. V. Prokof’eva, A. N. Sapronov, D. V. Prilepo, and Y. Beygelzimer, “Architectured hybrid conductors: Aluminium with embedded copper helix,” Mater. Des. 187, 108398 (2020). https://doi.org/10.1016/j.matdes.2019.108398

    CAS  Article  Google Scholar 

  30. 30

    Y. Qi, A. Kosinova, E. Lakin, V. V. Jr. Popov, E. Rabkin, and R. Lapovok, “Effect of SPD processing on the strength and conductivity of AA6061 alloy,” Adv. Eng. Mater. 21, 1801370 (2019). https://doi.org/10.1002/adem.201801370

    CAS  Article  Google Scholar 

  31. 31

    A. Vorhauer, S. Scheriau, and R. Pippan, “In-situ annealing of severe plastic-deformed OFHC copper,” Metall. Mater. Trans. A 39, 908–918 (2008).

    Article  Google Scholar 

  32. 32

    V. V. Popov, A. V. Stolbovsky, E. N. Popova, and V. P. Pilyugin, “Structure and thermal stability of Cu after severe plastic deformation,” Defect Diffus. Forum 297–301, 1312–1321 (2010).

  33. 33

    M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina, D. V. Shinyavskii, and V. I. Levit, “Recrystallization of submicrocrystalline niobium upon heating above and below the temperature of thermally activated nucleation,” Phys. Met. Metallogr. 117, No. 11, 1111–1118 (2016).

    CAS  Article  Google Scholar 

  34. 34

    V. V. Popov, E. N. Popova, A. V. Stolbovsky, and V. P. Pilyugin, “The structure of Nb obtained by severe plastic deformation and its thermal stability,” Mater. Sci. Forum 667669, 409–414 (2011).

    Google Scholar 

  35. 35

    V. V. Popov, E. N. Popova, and A. V. Stolbovskiy, “Nanostructuring Nb by various techniques of severe plastic deformation,” Mater. Sci. Eng., A 539, 22–29 (2012).

    CAS  Article  Google Scholar 

  36. 36

    H. R. Z. Sandim, M. J. R. Sandim, H. H. Bernardi, J. F. C. Lins, and D. Raabe, “Annealing effects on the microstructure and texture of a multifilamentary Cu‒Nb composite wire,” Scr. Mater. 51, 1099–1104 (2004).

    CAS  Article  Google Scholar 

  37. 37

    L. Deng, B. Wang, K. Han, R. Niu, H. Xiang, K. T. Hartwig, and X. Yang, “Response of microstructure to annealing in in situ Cu–Nb microcomposite,” J. Mater. Sci. 54, 840–850 (2019).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Stolbovskii for carrying out the HPT processing.

Funding

The studies were carried out using the equipment of the Center of Collaborative Access, Institute of Metal Physics, Ural Branch, Russian Academy of Sciences. The work was performed under the state task of the Ministry of Science and Higher Education of the Russian Federation (theme “Davlenie Pressure”, no. АААА-А18-118020190104-3).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. N. Popova.

Additional information

Translated by O. Golosova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popova, E.N., Deryagina, I.L. Evolution of Structure of Cu–Nb Composite under High-Pressure Torsion and Subsequent Annealing. Phys. Metals Metallogr. 121, 1182–1187 (2020). https://doi.org/10.1134/S0031918X20120091

Download citation

Keywords:

  • Cu–Nb composites
  • high-pressure torsion
  • structure
  • thermal stability