Deformation Behavior and Structural Evolution of Stainless Cr–Mn–N Steel during Low-Temperature Tension

Abstract—The deformation behavior and structure of 16.5Cr–18.8Mn–0.53N–0.07C steel deformed by tension in the temperature range from –196 to + 20°С have been investigated. A stage with a constant strain-hardening rate has been shown to be present in the temperature range –65 < t ≤ 20°C, which at –65 < t < 0°C is periodically interrupted by the parabolic hardening stage. Multiple strain localization has been observed in the samples at test temperatures of –65 < t < 0°С. There is γ → ε-transformation in steel at all deformation temperatures. Its contribution to the total ductility of steel increases as the test temperature decreases. Tension tests of steel at –196°C has resulted in γ → ε → α' transformation at the strain localization stage.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Yu. P. Solntsev, Cold-Resistant Steels and Alloys (Khim-izdat, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  2. 2

    L. G. Korshunov, V. V. Sagaradze, N. L. Chernenko, N. L. Pecherkina, G. Yu. Kalinin, S. Yu. Mushnikova, and O. A. Khar’kov, “Structure and tribological properties of nitrogen-containing austenitic steels,” Vopr. Mater. 71, No. 3, 136–145 (2012).

    Google Scholar 

  3. 3

    L. M. Kaputkina, D. E. Kaputkin, A. G. Glebov, M. O. Speidel, A. G. Svyazhin, and I. V. Smarygina, “High nitrogen high-strength steels,” Conf. Proc. 12th Int. Conf. High Nitrogen steels (HNS2014) (Hamburg, 2014), pp. 60–65.

  4. 4

    M. L. G. Byrnes, M. Grujicic, and W. S. Owen, “Nitrogen strengthening of a stable austenitic stainless steel,” Acta Met. 35, 1853–1862 (1987).

    CAS  Article  Google Scholar 

  5. 5

    M. V. Kostina, P. Yu. Polomoshnov, V. M. Blinov, S. O. Muradyan, and V. S. Kostina, “Cold resistance of new casting Cr–Mn–Ni–Co steel with 0.5% of N. Part one,” Steel Transl. 62, No. 11, 894–906 (2019).

    CAS  Google Scholar 

  6. 6

    L. G. Korshunov, Yu. N. Goikhenberg, N. A. Tereshchenko, A. I. Uvarov, A. V. Makarov, and N. L. Chernenko, “Wear resistance and surface structure of nitrogen-containing stainless austenitic steels upon friction and abrasive wear,” Phys. Met. Metallogr. 84, No. 5, 554 (1997).

    Google Scholar 

  7. 7

    S. Martin, S. Wolf, U. Martin, and L. Krüger, “Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature,” Metall. Mater. Trans. A 47, 49–58 (2016).

    CAS  Article  Google Scholar 

  8. 8

    E. G. Astafurova, V. A. Moskvina, G. G. Maier, A. I. Gordienko, A. G. Burlachenko, A. I. Smirnov, V. A. Bataev, N. K. Galchenko, and S. V. Astafurov, “Low-temperature tensile ductility by V-alloying of high-nitrogen CrMn and CrNiMn steels: characterization of deformation microstructure and fracture micromechanisms,” Mater. Sci. Eng., A 745, 265–278 (2019).

    CAS  Article  Google Scholar 

  9. 9

    T. -H. Lee, C. -S. Oh, and S. -J. Kim, “Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe–18Cr–10Mn–N steels,” Scr. Mater. 58, 110–113 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Y. Tomota, J. Nakano, Y. Xia, and K. Inoue, “Unusual strain rate dependence of low temperature fracture behavior in high nitrogen bearing austenitic steels,” Acta Mater. 46, No. 9, 3099–3108 (1998).

    CAS  Article  Google Scholar 

  11. 11

    F. B. Pickering, Physical Metallurgy and the Design of Steels (Appllied Science Publisher Ltd, London, 1978), p. 275.

    Google Scholar 

  12. 12

    T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim, “Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels,” Acta Mater. 58, 3173–3186 (2010).

    CAS  Article  Google Scholar 

  13. 13

    D. Rasouli, A. Kermanpur, E. Ghassemali, and A. Najafizadeh, “On the reversion and recrystallization of austenite in the interstitially alloyed Ni-free nano/ultrafined austenitic stainless steels,” Metall. Mater. Int. 25, 846–859 (2019).

    CAS  Article  Google Scholar 

  14. 14

    V. G. Gavriljuk, A. L. Sozinov, J. Foct, Yu. Petrov, and A. Polushkin, “Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels,” Acta Metall. 46, No. 4, 1157–1164 (1998).

    CAS  Google Scholar 

  15. 15

    V. G. Gavriljuk, Yu. Petrov, and B. Shanina, “Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels,” Scr. Mater. 55, 537–540 (2006).

    CAS  Article  Google Scholar 

  16. 16

    H. Mecking and U. F. Kocks, “Kinetics of flow and strain-hardening,” Acta Metall. 29, 1865–1875 (1981).

    CAS  Article  Google Scholar 

  17. 17

    U. F. Kocks and H. Mecking, “Physics and phenomenology of strain hardening: the FCC case,” Prog. Mater. Sci. 48, 171–273 (2003).

    CAS  Article  Google Scholar 

  18. 18

    S. Asgary, E. El-Danaf, S. Kalididndi, and R. Doherty, “Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins,” Metall. Mater. Trans. A 28, 1781–1795 (1997).

    Article  Google Scholar 

  19. 19

    N. A. Narkevich, I. A. Shulepov, and Yu. P. Mironov, “ Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment,” Phys. Met. Metallogr. 118, No. 4, 399–406 (2017).

    CAS  Article  Google Scholar 

  20. 20

    V. E. Panin, N. S. Surikova, S. V. Panin, A. R. Shugurov, and I. V. Vlasov, “Influence of nanoscale mesoscopic structural states associated with lattice curvature on the mechanical behavior of Fe–Cr–Mn austenitic steel,” Fiz. Mezomekh. 22, No. 3, 5–14 (2019).

    Google Scholar 

  21. 21

    N. Narkevich, N. Surikova, Y. Mironov, and Ye. Deryugin, “Low-temperature properties and structure of stainless Cr–Mn–N steel,” AIP Conf. Proc. 2051, 020210 (2018). https://doi.org/10.1063/1.5083453

    CAS  Article  Google Scholar 

Download references

Funding

This work was performed within the state assignment of the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences (project III.23.1.1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Narkevich.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narkevich, N.A., Surikova, N.S. Deformation Behavior and Structural Evolution of Stainless Cr–Mn–N Steel during Low-Temperature Tension. Phys. Metals Metallogr. 121, 1175–1181 (2020). https://doi.org/10.1134/S0031918X2012008X

Download citation

Keywords:

  • nitrided steel
  • low-temperature deformation
  • strain hardening
  • phase transformation