The Formation of the Nanosized Surface Layers of a Titanium Alloy by Ion-Beam Mixing of Carbon with N+ Ion Implantation

Abstract

The formation of nanoscale layers on the VT6 titanium alloy surface by ion-beam mixing of carbon with the N+ ion implantation is investigated in this work. Ion-beam mixing in the transition layer of a film–carbon system on the VT6 alloy surface has been found to provide conditions for the formation of titanium carbides and nitrides. The thin surface layer (~10–20 nm) of the samples after both the deposition and ion-beam mixing of a carbon film mostly consists of carbon in a disordered state with sp2 and sp3-hybridized C–C bonds. The formation of titanium carbides and nitrides in the transition layer, a disordered carbon structure in the thin surface layer, leads to a tenfold increase in the corrosion resistance of the samples.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    A. Rajabi, M. J. Ghazali, and A. R. Daud, “Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – A Review,” Mater. Des. 67, 46–95 (2015).

    Article  Google Scholar 

  2. 2

    I. G. Zhevtun, P. S. Gordienko, Yu. N. Kul’chin, E. P. Subbotin, S. B. Yarusova, and A. V. Golub, “Effects of doping of composite Ti–TiC coatings with transition and valve metals on their structure and mechanical properties,” Phys. Met. Metallogr. 120, 25–31 (2019).

    CAS  Article  Google Scholar 

  3. 3

    A. A. Sivkov and D. Yu. Gerasimov, “Plasma deposition of Ti–C–N coatings in air,” Fiz. Khim. Obrab. Mater., No. 3, 33–37 (2017).

  4. 4

    V. V. Ovchinnikov, E. V. Makarov, and N. V. Gushchina, “Austenite formation in α-phase Fe–Mn alloy after cold plastic working and fast heating by an Ar+ ion beam to 299°C,” Phys. Met. Metallogr. 120, 1207–1212 (2019).

    CAS  Article  Google Scholar 

  5. 5

    R. A. Andrievski, “Nanomaterials based on high-melting carbides, nitrides, and borides,” Russ. Chem. Rev. 74, 1061–1072 (2005).

    CAS  Article  Google Scholar 

  6. 6

    B. A. Kalin, N. V. Volkov, and I. V. Oleinikov, “Ion mixing in multilayer films and the doping of the near-surface layers of polycrystalline substrates under irradiation by ion beams with a wide energy spectrum,” Bull. Russ. Acad. Sci.: Phys. 76, 690–695 (2012).

    CAS  Article  Google Scholar 

  7. 7

    G. S. Bocharov, A. V. Eletskii, A. V. Zakharenkov, O. S. Zilova, A. P. Sliva, E. V. Terentyev, S. D. Fedorovich, and G. N. Churilov, “Optimization of steel-surface hardening by carbon nanostructures followed by treatment with high-intensity energy sources,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 27–32 (2018).

    CAS  Article  Google Scholar 

  8. 8

    F. F. Komarov, V. M. Konstantinov, A. V. Kovalchuk, S. V. Konstantinov, and H. A. Tkachenko, “The effect of steel substrate pre-hardening on structural, mechanical, and tribological properties of magnetron sputtered TiN and TiAlN coatings,” Wear 352–353, 92–101 (2016).

    Article  Google Scholar 

  9. 9

    A. F. Burenkov, F. F. Komarov, M. A. Kumakhov, and M. M. Temkin, Table of Parameters of Space Distribution of Ion-Implanted Impurities (Izd-vo BGU, Minsk, 1980) [in Russian].

    Google Scholar 

  10. 10

    V. I. Nefedov, X-ray Electron Spectroscopy of Chemical Compounds (Khimiya, Moscow, 1984).

    Google Scholar 

  11. 11

    Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seah (Wiley, Chichester, 1983; Mir, Moscow, 1987).

  12. 12

    https://srdata.nist.gov/xps/EnergyTypeValSrch.aspx.

  13. 13

    V. V. Ovshinnikov, “Radiation-dynamic effects. Potential for producing condensed media with unique properties and structural states,” Phys.-Usp. 51, 955–946 (2008).

    Article  Google Scholar 

  14. 14

    S. A. Bedin, V. V. Ovchinnikov, G. E. Remnev, F. F. Makhin’ko, S. K. Pavlov, N. V. Gushchina, and D. L. Zagorskii, “Radiation stability of metal Fe0.56Ni0.44 nanowires exposed to powerful pulsed ion beams,” Phys. Met. Metallogr. 119, 44–51 (2018).

    CAS  Article  Google Scholar 

  15. 15

    S. M. Reshetnikov, O. R. Bakieva, E. M. Borisova, S. G. Bystrov, V. L. Vorob’ev, F. Z. Gil’mutdinov, T. S. Kartapova, A. A. Kolotov, D. V. Surnin, and V. Ya. Bayankin, “Effect of nitrogen ion implantation on corrosion-electrochemical and other properties of Armco-iron. Part 1. Preparation and certification of samples,” Korroziya: Materials, Zachshita, No. 12, 1–9 (2017).

    Google Scholar 

  16. 16

    V. L. Vorob’ev, P. V. Bykov, V. Ya. Bayankin, A. A. Shushkov, and A. V. Vakhrushev, “Mechanical properties of carbon steel depending on the rate of the dose build-up of nitrogen and argon ions,” Phys. Met. Metallogr. 115, 800–804 (2014).

    Article  Google Scholar 

  17. 17

    V. L. Vorob’ev, P. V. Bykov, V. Ya. Bayankin, and F. Z. Gil’mutdinov, “Formation of nanosized surface layers of 03Kh17N12M2 stainless steel by implantation of N+ ions, ” Tech. Phys. 64, 1178–1183 (2019).

    Article  Google Scholar 

  18. 18

    A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos. Trans. R. Soc. Lond. 362, 2477–2512 (2004).

    CAS  Article  Google Scholar 

  19. 19

    R. Hauert and J. Patscheilder, “From alloying to nanocomposites – improved performance of hard coatings,” Adv. Eng. Mater. 2, 247–259 (2000).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was carried out using the equipment of the Testing Center for Collective Use “Surface and New Materials” at the Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, which was supported by the Ministry of Education and Science as part of the Federal Target Program “Research and development in priority areas of development of the scientific and technological complex of Russia for 2014–2020.”

Funding

This work was performed within the scope of a State Task of the Ministry of Education and Science of the Russian Federation (theme No. АААА-А17-117022250040-0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. L. Vorob’ev.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vorob’ev, V.L., Gil’mutdinov, F.Z., Syugaev, A.V. et al. The Formation of the Nanosized Surface Layers of a Titanium Alloy by Ion-Beam Mixing of Carbon with N+ Ion Implantation. Phys. Metals Metallogr. 121, 460–465 (2020). https://doi.org/10.1134/S0031918X20050142

Download citation

Keywords:

  • ion-beam mixing
  • carbon nanofilms
  • titanium carbide and nitrides
  • X-ray photoelectron spectroscopy