Microstructure Evolution and Mechanical Properties of 2219 Aluminum Alloy A–TIG Welds

Abstract

The effects of three activating fluxes, SiO2, TiO2, and MoO3, in tungsten inert gas (TIG) welding process on penetration, morphology, and mechanical properties of weld joint were investigated by bead on plate welding on 2219 aluminum alloy. Experimental results showed that a noticeable increase in the weld penetration and depth to with ratio was obtained by using activating fluxes. Among all the activating fluxes used in this study, the maximum penetration was achieved in case of SiO2 flux. The microstructure analysis demonstrated that oxide fluxes can promote transition from columnar to equiaxed grain growth in the fusion zone. It is also found that A–TIG weldments exhibit superior mechanical properties including tensile strength and hardness than those of TIG welding without flux.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    F. C. Campbell, Light Weight Materials (ASM International, Ohio, 2012).

    Google Scholar 

  2. 2

    P. S. Rao, K. G. Sivadasan, and P. K. Balasubramanian, “Structure–property correlation on AA 2219 aluminum alloy weldments,” Bull. Mater. Sci. 19, 549–557 (1996).

    CAS  Article  Google Scholar 

  3. 3

    E. Ahmadi and A. R. Ebrahimi, “Welding of 316L austenitic stainless steel with activated tungsten inert gas process,” J. Mater. Eng. Perform. 24, 1065–1071 (2015).

    CAS  Article  Google Scholar 

  4. 4

    S. Tathgir, A. Bhattacharya, and T. K. Bera, “Influence of current and shielding gas in TiO2 flux activated TIG welding on different graded steels,” Mater. Manuf. Processes 30, 11–15 (2015).

    Article  Google Scholar 

  5. 5

    A. Kulkarni, D. K. Dwivedi, and M. Vasudevan, “Study of mechanism, microstructure and mechanical properties of activated flux TIG welded P91 Steel-P22 steel dissimilar metal joint,” Mater. Sci. Eng., A 731, 309–323 (2018).

    CAS  Article  Google Scholar 

  6. 6

    S. Z. Li, J. Shen, Z. M. Cao, and L. Z. Wang, “Effects of mix activated fluxes coating on microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints,” Sci. Technol. Weld. Joining 17, 467–475 (2012).

    CAS  Article  Google Scholar 

  7. 7

    K. D. Ramkumar, B. M. Kumar, M. G. Krishnan, S. Dev, A. J. Bhalodi, N. Arivazhagan, and S. Narayanan, “Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718,” Mater. Sci. Eng., A 639, 234–244 (2015).

    CAS  Article  Google Scholar 

  8. 8

    H. L. Lin and T. M. Wu, “Effects of activating flux on weld bead geometry of Inconel 718 alloy TIG welds,” Mater. Manuf. Processes 27, 1457–1461 (2012).

    CAS  Article  Google Scholar 

  9. 9

    X. Gao, J. Dong, and X. Han, “Effect of RE2O3 (RE = La, Ce) fluxes on A-TIG welding of Ti–6Al–4V,” Int. J. Adv. Manuf. Technol. 91, 1181–1188 (2017).

    Article  Google Scholar 

  10. 10

    Y. Yin, D. Zhang, G. Yu, W. Wu, and W. Qu, “Porosity free direct current A-TIG welding of 2219 aluminum alloy,” Trans. China Weld. Inst. 38, 61–64 (2017).

    Google Scholar 

  11. 11

    H. Li, J. Zou, J. Yao, and H. Peng, “The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy,’ J. Alloys Compd. 727, 531–539 (2017).

    CAS  Article  Google Scholar 

  12. 12

    A. V. S. Babu, P. R. Narayanan, and S. V. S. Narayana Murty, “Development of flux bounded tungsten inert gas welding process to join aluminum alloys,” Amer. J. Mech. Ind. Eng. 1, 58–63 (2016).

    Google Scholar 

  13. 13

    D. S. Howse and W. Lucas, “Investigation into arc constriction by active fluxes for tungsten inert gas welding,” Sci. Technol. Weld. Joining 5, 189–193 (2000).

    CAS  Article  Google Scholar 

  14. 14

    C. Heiple and J. Roper, “Mechanism for minor element effect on GTA fusion zone geometry,” Weld. J. 61, 97–108 (1982).

    Google Scholar 

  15. 15

    D. K. Aidun and S. A. Martin, “Effect of sulfur and oxygen on weld penetration of high-purity austenitic stainless steels,” J. Mater. Eng. Perform. 6, 496–502 (1997).

    CAS  Article  Google Scholar 

  16. 16

    S. A. David and J. M. Vitek, “Correlation between solidification parameters and weld microstructures,” Int. Mater. Rev. 34, 213–245 (1989).

    CAS  Article  Google Scholar 

  17. 17

    G. W. Delamore and R. W. Smith, “The mechanism of grain refinement in dilute Al alloys,” Metall. Trans. 2, 1733–1738 (1971).

    CAS  Google Scholar 

  18. 18

    S. R. Koteswara Rao, G. Madhusudhan Reddy, P. Srinivasa Rao, M. Kamaraj, and K. Prasad Rao, “Improving mechanical properties of 2219 aluminum alloy GTA welds by scandium addition,” Sci. Technol. Weld. Joining 10, 418–426 (2005).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Ahmadi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Ebrahimi, A.R. & Hoseinzadeh, A. Microstructure Evolution and Mechanical Properties of 2219 Aluminum Alloy A–TIG Welds. Phys. Metals Metallogr. 121, 483–488 (2020). https://doi.org/10.1134/S0031918X20050026

Download citation

Keywords:

  • 2219 aluminum alloy
  • activating flux
  • weld penetration
  • TIG welding