Magnetic Nanoparticles as a Strong Contributor to the Biocompatibility of Ferrogels


Biomedical engineering is the most promising field for the application of ferrogels as scaffolds for cell culturing in regenerative medicine, targeted drug delivery, and biosensorics. This study is focused on the contribution of ferric-oxide magnetic nanoparticles (MNPs) to the biocompatibility of ferrogels with human dermal fibroblasts. The results of experiments with polyacrylamide gels filled with MNPs are presented. These experiments demonstrate that, regardless of the mechanical and electrical characteristics of ferrogels, MNPs have a significant effect on the biological activity of cells.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.


  1. 1

    Y. Li, G. Huang, X. Zhang, B. Li, Y. Chen, T. Lu, T. Lu, and F. Xu, “Magnetic hydrogels and their potential biomedical applications,” Adv. Funct. Mater. 23, 660–672 (2013).

    CAS  Article  Google Scholar 

  2. 2

    S. Kennedy, C. Roco, A. Délerisa, P. Spoerri, C. Cezar, J. Weaver, H. Vandenburgh, and D. Mooney, “Improved magnetic regulation of delivery profiles from ferrogels,” Biomaterials 161, 179–189 (2018).

    CAS  Article  Google Scholar 

  3. 3

    G. V. Kurlyandskaya, E. Fernandez, A. P. Safronov, A. V. Svalov, I. V. Beketov, A. B. Beitia, A. Garcia-Arribas, and F. A. Blyakhman, “Giant magnetoimpedance biosensor for ferrogel detection: Model system to evaluate properties of natural tissue,” Appl. Phys. Lett. 106, 193702 (2015).

    Article  Google Scholar 

  4. 4

    N. A. Buznikov, A. P. Safronov, I. Orue, E. V. Golubeva, V. N. Lepalovskij, A. V. Svalov, A. A. Chlenova, and G. V. Kurlyandskaya, “Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection,” Biosens. Bioelectron. 117, 366–372 (2018).

    CAS  Article  Google Scholar 

  5. 5

    F. A. Blyakhman, A. P. Safronov, A. Yu. Zubarev, T. F. Shklyar, O. G. Makeyev, E. B. Makarova, V. V. Melekhin, A. Larrañaga, and G. V. Kurlyandskaya, “Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering,” Results Phys. 6, 3624–3633 (2017).

    Article  Google Scholar 

  6. 6

    F. A. Blyakhman, A. P. Safronov, O. G. Makeyev, V. V. Melekhin, T. F. Shklyar, A. Yu. Zubarev, E. B. Makarova, D. A. Sichkar, M. A. Rusinova, S. Yu. Sokolov, and G. V. Kurlyandskaya, “Effect of the polyacrylamide ferrogel elasticity on the cell adhesiveness to magnetic composite,” J. Mech. Medicine Biology 18, 1850060 (2018).

    Article  Google Scholar 

  7. 7

    D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310, 1139–1143 (2005).

    CAS  Article  Google Scholar 

  8. 8

    A. Cretu, P. Castagnino, and R. Assoian, “Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels,” J. Visualized Exp., No. 42. e2089 (2010).

  9. 9

    A. Trappmann, J. E. Gautrot, J. T. Connelly, D. G. T. Strange, Y. Li, M. L. Oyen, M. A. C. Cohen Stuart, H. Boehm, B. Li, V. Vogel, J. P. Spatz, F. M. Watt, and W. T. S. Huck, “Extracellular-matrix tethering regulates stem-cell fate,” Nat. Mater. 11, 642–649 (2012).

    CAS  Article  Google Scholar 

  10. 10

    C. A. Mullen, T. J. Vaughan, K. L. Billiar, and L. M. McNamara, “The effect of substrate stiffness, thickness, and cross-linking density on osteogenic cell behavior,” Biophys. J. 108, 1604–1612 (2015).

    CAS  Article  Google Scholar 

  11. 11

    F. A. Blyakhman, E. B. Makarova, F. A. Fadeyev, D. V. Lugovets, A. P. Safronov, P. A. Shabadrov, T. F. Shklyar, G. Yu. Melnikov, I. Orue, and G. V. Kurlyandskaya, “The contribution of magnetic nanoparticles to ferrogel biophysical properties,” Nanomaterials 9 (2), article No. 232 (2019).

    CAS  Article  Google Scholar 

  12. 12

    J. H. Grossman and S. E. McNeil, “Nanotechnology in cancer medicine,” Phys. Today 65, 38–42 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Yu. A. Kotov, “Electric explosion of wires as a method for preparation of nanopowders,” J. Nanopart. Res. 5, 539–550 (2003).

    Article  Google Scholar 

  14. 14

    A. P. Safronov, I. V. Beketov, S. V. Komogortsev, G. V. Kurlyandskaya, A. I. Medvedev, D. V. Leiman, A. Larranaga, and S. M. Bhagat, “Spherical magnetic nanoparticles fabricated by laser target evaporation,” AIP Adv. 3, 052135 (2013).

    Article  Google Scholar 

  15. 15

    F. A. Blyakhman, L. Y. Iskakova, M. T. Lopez-Lopez, and A. Y. Zubarev, “To the theory of mechano-magnetic effects in ferrogels,” J. Magn. Magn. Mater. 478, 211–215 (2019).

    CAS  Article  Google Scholar 

  16. 16

    G. Glavan, P. Salamon, I. A. Belyaeva, M. Shamonin, and I. Drevenšek-Olenik, “Tunable surface roughness and wettability of a soft magnetoactive elastomer,” J. Appl. Polym. Sci. 135, 46221 (2018).

    Article  Google Scholar 

  17. 17

    V. V. Sorokin, B. O. Sokolov, G. V. Stepanov, and E. Y. Kramarenko, “Controllable hydrophobicity of magnetoactive elastomer coatings,” J. Magn. Magn. Mater. 459, 268–271 (2018).

    CAS  Article  Google Scholar 

Download references


This study was supported by the Russian Science Foundation, grant no. 18-19-00090.

Author information



Corresponding author

Correspondence to F. A. Blyakhman.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blyakhman, F.A., Makarova, E.B., Shabadrov, P.A. et al. Magnetic Nanoparticles as a Strong Contributor to the Biocompatibility of Ferrogels. Phys. Metals Metallogr. 121, 299–304 (2020).

Download citation


  • magnetic nanoparticles
  • ferrogels
  • cells
  • tissue engineering