Skip to main content
Log in

Features of the Decomposition of Delta Ferrite in Nitrogen-Containing Austenitic Steels

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Features of the decomposition of the ferromagnetic δ ferrite with the formation of nonferromagnetic constituents (γ and σ phases) at temperatures of 900–1200°C in a nitrogen-containing austenitic steel have been determined. The transformation of δ ferrite at high temperatures (1100–1200°C) occurs with the formation of Widmanstäatten austenitic crystals in the ferritic matrix. At lower temperatures (900–1000°C), the transformation of δ ferrite develops by discontinuous decomposition with the formation of colonies of alternating plates of paramagnetic γ and σ phases. In the course of formation of the nonferromagnetic state as a result of the decomposition of δ ferrite at 900–1000°C (for 1 h), a subgrain structure with an increased density of dislocations, which is typical of thermomechanical treatment, is retained in the steel previously strengthened by high-temperature deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Bannykh and V. M. Blinov, Precipitation-Hardening Nonmagnetic Vanadium-Containing Steels (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  2. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Alloys (RIO UrO RAN, Ekaterinburg, 2013) [in Russian].

    Google Scholar 

  3. I. I. Kositsyna and V. V. Sagaradze, “Austenitic steels of various alloying systems strengthened with carbides,” Russ. Metall. (Metally) 2001, 615–623 (2001).

    Google Scholar 

  4. I. V. Gorynin, V. V. Rybin, V. A. Malyshevskii, G. Yu. Kalinin, N. V. Malakhov, S. Yu. Mushnikova, and V. D. Yampol’skii, “Designing advanced fundamentally new corrosion-resistant hull steels alloyed with nitrogen,” Vopr. Materialoved., No. 2, 40–54 (2005).

    Google Scholar 

  5. V. V. Sagaradze, A. I. Uvarov, N. L. Pecherkina, G. Yu. Kalinin, and S. Yu. Mushnikova, “Effect of a strengthening treatment on the structure and mechanical properties of quenched nitrogen-containing austenitic steel 04Kh20N6G11AM2BF,” Metalloved. Term. Obrab. Met., No. 10, 33–38 (2008).

    Google Scholar 

  6. I. V. Gorynin, V. A. Malyshevskii, G. Yu. Kalinin, S. Yu. Mushnikova, O. A. Bannykh, V. M. Blinov, and M. V. Kostina, “Corrosion-resistant high-strength nitrogen-containing steels,” Vopr. Materialoved., No. 3, 7–16 (2009).

    Google Scholar 

  7. S. Yu. Mushnikova, V. V. Sagaradze, Yu. I. Filippov, N. V. Kataeva, V. A. Zavalishin, V. A. Malyshevskii, G. Yu. Kalinin, and S. K. Kostin, “Comparative analysis of corrosion cracking of austenitic steels with different contents of nitrogen in chloride-and hydrogencontaining media,” Phys. Met. Metallogr. 116, 626–636 (2015).

    Article  Google Scholar 

  8. S. Yu. Mushnikova, S. K. Kostin, V. V. Sagaradze, and N. V. Kataeva, “Structure, properties, and resistance to stress-corrosion cracking of a nitrogen-containing austenitic steel strengthened by thermomechanical treatment,” Phys. Met. Metallogr. 118, 1155–1167 (2017).

    Article  Google Scholar 

  9. A. M. Parshin, Structure, Strength, and Radiation-Induced Damageability of Corrosion-Resistant Steels and Alloys (Metallurgiya, Chelyabinsk, 1988) [in Russian].

    Google Scholar 

  10. H. Keshmiri, A. Momeni, K. Dehghani, G. R. Ebrahimi, and G. Heidari, “Effect of aging time and temperature on mechanical properties and microstructural evolution of 2205 ferritic–austenitic stainless steel,” J. Mater. Sci. Technol. 25, 597–602 (2009).

    Google Scholar 

  11. C.-C. Hsich and W. Weite, “Overview of intermetallic sigma (s) phase precipitation in stainless steels,” in International scholarly research network (ISRN) metallurgy, 2012, pp. 1–16. doi: 105402/2012/732471

  12. M. V. Kostina, S. O. Muradyan, M. S. Khadyev, and A. A. Korneev, “Phase transformations in a corrosionresistant high-chromium nitrogen-bearing steel,” Russ. Metall. (Metally) 2011, 813–825 (2011).

    Article  Google Scholar 

  13. A. E. Vol, Structure and Properties of Binary Metal Systems oenie i svoistva dvoinykh metallicheskikh sistem (FIZMATLIT, Moscow, 1962) [in Russian].

    Google Scholar 

  14. V. V. Sagaradze, I. G. Kabanova, N. L. Pecherkina, and A. N. Malyshev, “Crystal-geometrical features of the ferrite–austenite transformations and the transformation-induced strengthening (naklep) of austenite,” Fiz. Met. Metalloved. 60, 530–541 (1985).

    Google Scholar 

  15. C. J. Smithells, Metals Reference Book (Butterworths, Boston, 1976; Metallurgiya, Moscow, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sagaradze.

Additional information

Original Russian Text © V.V. Sagaradze, O.V. Fomina, T.V. Vikhareva, N.V. Kataeva, I.G. Kabanova, V.A. Zavalishin, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 3, pp. 296–302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagaradze, V.V., Fomina, O.V., Vikhareva, T.V. et al. Features of the Decomposition of Delta Ferrite in Nitrogen-Containing Austenitic Steels. Phys. Metals Metallogr. 119, 282–288 (2018). https://doi.org/10.1134/S0031918X18030110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18030110

Keywords

Navigation