Physics of Metals and Metallography

, Volume 119, Issue 3, pp 272–281 | Cite as

Structure of Quenched Ti–Ru Alloys

Structure, Phase Transformations, and Diffusion
  • 6 Downloads

Abstract

Quenched titanium–ruthenium alloys containing 0.25–4 at % ruthenium have been studied using X-ray diffraction analysis, optical metallography, transmission electron microscopy, and microhardness measurements. It has been found that, during the quenching of the alloys containing 0.25, 0.5, and 1 at % ruthenium, a polymorphic β → α transformation occurs with the formation of a two-phase (α + β) structure. In Ti–1.5 at % Ru and Ti–2 at % Ru alloys, a martensitic β → α″ transformation occurs. The quenched Ti–3 at % Ru alloy has a β + ω structure. The complete stabilization of the β phase takes place in the alloy with 4 at % ruthenium. In the electron-diffraction patterns of alloy containing 4 at % ruthenium, diffuse scattering that indicates the formation of ω-phase-related displacements in the locations of atoms has been observed.

Keywords

Ti–Ru alloys structure α″ phase ω phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Dobromyslov and V. A. Elkin, “β → α and β → ω transformations in Ti–Os alloys,” Metall. Mater. Trans. A 30, 231–233 (1999).CrossRefGoogle Scholar
  2. 2.
    A. V. Dobromyslov and N. I. Taluts, “Structure of quenched alloys of the Ti–Pd system,” Fiz. Met. Metallogr. 117 (7), 693–700 (2016).CrossRefGoogle Scholar
  3. 3.
    A. V. Dobromyslov and V. A. Elkin, “Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods,” Scr. Mater. 44, 905–910 (2001).CrossRefGoogle Scholar
  4. 4.
    A. V. Dobromyslov and V. A. Elkin, “The orthorhombic a?-phase in binary titanium-base alloys with d-Metals of V–VIII Groups,” Mater. Sci. Eng., A 438–440, 324–326 (2006).CrossRefGoogle Scholar
  5. 5.
    V. N. Eremenko, T. D. Shtepa, and V. G. Sirotenko, “On the intermediate phases in titanium alloys with iridium, rhodium, and osmium,” Poroshk. Metall., No. 6, 68–72 (1966).Google Scholar
  6. 6.
    A. I. Antipov and V. N. Moiseev, “On the coefficient of stablization β of titanium alloys,” Metalloved. Term. Obrab. Met., No. 12, 2–5 (1997).Google Scholar
  7. 7.
    L. N. Guseva and L. K. Dolinskaya, “Metastable phases in titanium alloys with Group VIII elements quenched from the β field,” Izv. Akad. Nauk SSSR. Met., No. 6, 195–202 (1974).Google Scholar
  8. 8.
    E. Raub and E. Roschel, “Die Legierungen des Rutheniums mit Titan und Zirconium,” Z. Metallkd. 54, 455–462 (1963).Google Scholar
  9. 9.
    L. N. Guseva, N. G. Boriskina, and L. K. Dolinskaya, “Metastable phases in titanium-rich Ti–Ru alloys,” Izv. Akad. Nauk SSSR, Met., No. 3, 215–217 (1973).Google Scholar
  10. 10.
    N. G. Boriskina and I. I. Kornilov, “On the Ti–Ru phase diagram,” Izv. Akad. Nauk SSSR, Met., No. 2, 214–217 (1976).Google Scholar
  11. 11.
    Phase Diagrams of Binary Metal Systems: A Handbook, Ed. by N.P. Lyakishev, Vol. 3, Book 2 (Mashinostroenie, Moscow, 1999) [in Russian].Google Scholar
  12. 12.
    I. I. Novikov, Theory of Heat Treatment (Metallurgiya, Moscow, 1974) [in Russian].Google Scholar
  13. 13.
    Yu. D. Tyapkin, “Electronography,” in Itogi nauki i tekhniki. Ser.: Metallovedenie i termicheskaya obrabotka, vol. 11 (VINITI, Moscow, 1977), pp. 152–214 [in Russian].Google Scholar
  14. 14.
    H. J. Lee and H. I. Aaronson, “Eutectoid Decomposition Mechanisms in Hypoeutectoid Ti–X Alloys,” J. Mater. Sci. 23, 150–160 (1988).CrossRefGoogle Scholar
  15. 15.
    G. W. Franti, J. C. Williams, and H. I. Aaronson, “A Survey of Eutectoid Decomposition in Ten Ti–X Systems,” Metall. Trans. A 9, 1641–1649 (1978).CrossRefGoogle Scholar
  16. 16.
    A. V. Dobromyslov and N. V. Kazantseva, “Phase Transformations in the Ti–Cu System,” Fiz. Met. Metalloved. 89, 467–473 (2000).Google Scholar
  17. 17.
    A. V. Dobromyslov, “Phase transformations and structure of titanium alloys,” in New promising materials and new technologies, Ed. by N. I. Noskova (UrO RAN, Ekaterinburg, 2001) [in Russian].Google Scholar
  18. 18.
    M. Enomoto and M. Fujita, “Analysis of the composition of a plates isothermally formed in titanium binary alloys,” Metall. Trans. A 21, 1547–1555 (1990).CrossRefGoogle Scholar
  19. 19.
    E. V. Collins, Physical Metallurgy of Titanium Alloys (Metallurgiya, Moscow, 1988) [in Russian].Google Scholar
  20. 20.
    N. I. Taluts, A. V. Dobromyslov, and V. A. Elkin, “Structural and phase transformations in quenched and aged Zr-Ru alloys,” J. Alloys Compd. 282, 187–196 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations