Skip to main content
Log in

Effects of isothermal treatments on non-stoichiometrical preparation for the optimized perovskite structure of BiFeO3 bulk ceramics

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Bismuth ferrite powders were synthesized by a simple solid state reaction method at the room temperature by non-stoichiometrical preparation. The fabricated BiFeO3 ceramics clearly exhibited phase transformations to BiFeO3 and secondly bismuth ferrites by an elevated temperature procedure and isothermal heat treatment. The isothermal heat treatments at 1123 K and 1148 K made rhombohedral BiFeO3 and ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Scott, “Isostructural phase transitions in BiFeO3,” Adv. Mater. 22, 2106–2107 (2010).

    Article  Google Scholar 

  2. H. Fukumura, S. Matsui, H. Harima, T. Takahashi, T. Itoh, K. Kisoda, M. Tamada, Y. Noguchi. and M. Miyayama, “Observation of phonons in multiferroic BiFeO3 single crystals by Raman scattering,” J. Phys. Condens. Matter 19, 365224 (2007).

    Article  Google Scholar 

  3. T. Takenaka and H. Nagata, “Current status and prospects of lead-free piezoelectric ceramics,” J. Eur. Ceram. Soc. 25, 2693–2700 (2005).

    Article  Google Scholar 

  4. G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Adv. Mater. 21, 2463–2485 (2009).

    Article  Google Scholar 

  5. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, β phase and γ-β metal-insulator transition in multiferroic BiFeO3,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 014110 (2008).

    Article  Google Scholar 

  6. W. Kaczmarek, Z. Pajak, and M. Polomska, “Differential thermal analysis of phase transitions in (Bi1−x Lax)FeO3 solid solution,” Solid State Commun. 17, 807–8100 (1975).

    Article  Google Scholar 

  7. L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, and R. Ramesh, “Multiferroics and magnetoelectrics: Thin films and nanostructures,” J. Phys. Condens. Mater. 20, 434220 (2008).

    Article  Google Scholar 

  8. S. S. Eaton, D. B. Butler, M. Parris, and D. Wilson, “A ferroelectric nonvolatile memory,” IEEE Int. Solid-State Circuits Conf. 130, 130–131 (1988).

    Google Scholar 

  9. T. Grande, “The Ferroic phase transitions of BiFeO3,” Adv. Mater. 20, 3692–3696 (2008).

    Article  Google Scholar 

  10. R. Haumont, P. Bouvier, A. Pashkin, K. Rabia, S. Frank, B. Dkhil, W. A. Crichton, C. A. Kuntscher, and J. Kreisel, “Effect of High Pressure on Multiferroic BiFeO3,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 184110 (2009).

    Article  Google Scholar 

  11. T. Liu, Y. Xu, and J. Zhao, “Low-temperature synthesis of BiFeO3 via PVA sol-gel route,” J. Am. Ceram. Soc. 93, 3637–3641 (2010).

    Article  Google Scholar 

  12. M. Y. Shami, M. S. Awan, and M. Anis-Ur-Rehman, “Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via Co-precipitation method,” J. Alloys Compd. 509, 10139–10144 (2011).

    Article  Google Scholar 

  13. F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, and D. Collison, “Microstructure and properties of Co-, Ni-, Zn-, Nb- and W-modified multiferroic BiFeO3 ceramics,” J. Eur. Ceram. Soc. 30, 727–736 (2010).

    Article  Google Scholar 

  14. M. S. Bernardo, T. Jardiel, M. Peiteado, A.C. Caballero, and M. Villegas, “Sintering and microstuctural characterization of W6+, Nb5+ and Ti4+ iron-substituted BiFeO3,” J. Alloy. Compd. 509, 7290–7296 (2011).

    Article  Google Scholar 

  15. M. S. Bernardo, T. Jardiel, M. Peiteado, A. C. Caballero, and M. Villegas, “Reaction pathways in the solid state synthesis of multiferroic BiFeO3,” J. Eur. Ceram. Soc. 31, 3047–3053 (2011).

    Article  Google Scholar 

  16. S. M. Selbach, M. Einarsrud, A., Tybell T., and T. Grande, “Synthesis of BiFeO3 by wet chemical methods,” J. Am. Ceram. Soc. 90, 3430–3434 (2007).

    Article  Google Scholar 

  17. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu and Z. G. Liu, “Room temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering,” Appl. Phys. Lett. 84, 1731–1733 (2004).

    Article  Google Scholar 

  18. M. W. Lufaso, T. A. Vanderah, I. M. Pazos, I. Levin, R. S. Roth, J. C. Nino, V. Provenzano, and P. K. Schenck, “Phase formation, crystal chemistry, and properties in the system Bi2O3-Fe2O3-Nb2O5,” J. Solid State Chem. 179, 3900–3910 (2006).

    Article  Google Scholar 

  19. D. Sining, Y. Yiping, H. Ying, L. Yukuai, T. Yang, and L. Xiaoguang, “Dynamic properties of spin cluster glass and the exchange bias effect in BiFeO3 nanocrystals,” Nanotecnology 22, 385701 (2011).

    Article  Google Scholar 

  20. J. Lu, L. J. Qiao, P. Z. Fu, and Y. C. Wu, “Phase Equilibrium of Bi2O3-Fe2O3 Pseudo-Binary System and Growth of BiFeO3 Single Crystal,” Proc. 16th Int. Conf. on Crystal Growth (ICCG16)/The 14th Int. Conf. on Vapor Growth and Epitaxy (ICVGE14); J. Cryst. Growth 318, 936–941 (2011).

    Google Scholar 

  21. A. Maitre, M. Francois, and J. C. Gachon, “Experimental study of the Bi2O3-Fe2O3 pseudobinary system,” J. Phase Equilib. Diff. 25, 59–67 (2004).

    Article  Google Scholar 

  22. A. V. Mikhailov, N. A. Gribchenkova, E. N. Kolosov, A. R. Kaul’, and A. S. Alikhanyan, “Mass spectrometric investigation of vaporization in the Bi2O3-Fe2O3 system,” Russ. J. Phys. Chem. A 85, 26–30 (2011).

    Article  Google Scholar 

  23. J. H. Miao, T.-T. Fang, H.-Y. Chung, and C.-W. Yang, “Effect of La doping on the phase conversion, microstructure change, and electrical properties of Bi2Fe4O9 ceramics,” J. Am. Ceram. Soc. 92, 2762–2764 (2009).

    Article  Google Scholar 

  24. A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, “Magnetic and electrical properties of single-phase multiferroic BiFeO3,” J. Appl. Phys. 97, 093903 (2005).

  25. M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic,” Appl. Phys. Lett. 76, 2764–2766 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -J. Oak.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oak, J.J., Cho, Y.J., Chun, H.H. et al. Effects of isothermal treatments on non-stoichiometrical preparation for the optimized perovskite structure of BiFeO3 bulk ceramics. Phys. Metals Metallogr. 115, 1342–1350 (2014). https://doi.org/10.1134/S0031918X14130183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14130183

Keywords

Navigation