Skip to main content
Log in

Influence of diffusion annealing on residual resistivity of Nb3Sn-based chromium-plated strands obtained by a bronze process

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The residual resistivity ratio, R273/R20, is an important parameter for multifilament superconductors (strands) based on Nb3Sn that are used to manufature cables of magnetic systems. High values of RRR impart stability to the cable with regard to thermal excitations. Nb3Sn strands for magnetic system of the International Thermonuclear Experimental Reactor are manufactured from high purity oxygen-free copper with RRR > 250 units; however, after extended diffusion annealing intended to form superconducting phase Nb3Sn, the residual resistivity ratio values of the strands decrease. This work investigates the influence of diffusion annealing for 55–200 h during the final stage at 650°C on the residual resistivity ratio of chromium-plated Nb3Sn strands. The contents of chromium and oxygen have been analyzed using X-ray spectral microanalysis of the strand surface and peripheral copper layers. Mass spectrometry with inductively coupled plasma (ICP mass spectrometry) has been used to determine the total chromium content in the copper shell. The influence of chromium and oxygen diffusion from coating during annealing at 650°C on the residual resistivity ratio has been demonstrated. Based on the data of ICP mass spectrometry, the depth of the penetration of chromium in a copper shell has been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Al’tov, V. B. Zenkevich, M. G. Kremlev, and V. V. Sychev, Stabilization of Superconducting Magnetic Systems (Izdat. Dom MEI, Moscow, 2008).

    Google Scholar 

  2. Technical Specification ANNEX B to Procurement Arrangement 1.1.P6A.RF.01.0.

  3. R. Wesche, F. Roth, and P. Bruzzone, “Final Report on Tests of Advanced Nb3Sn Strand EFDA,” ref. ASTEST Contract 03-1121, Deliverable 4.5 (2006).

  4. M. V. Polikarpova, N. I. Kozlenkova, A. D. Nikulin, A. K. Shikov, V. I. Pantsyrnyi, A. E. Vorob’eva, E. A. Dergunova, E. N. Popova, L. and A. Rodionova, “On the Relationship between the Microstructure and Electrical Resistivity of Copper Used in Superconducting Composites,” Phys. Met. Merallogr. 91, 137–144 (2001).

    Google Scholar 

  5. A. E. Vorobieva, A. D. Nikulin, A. K. Shikov, V. I. Pantsyrnyi, M. V. Polikarpova, N. I. Kozlenkova, E. A. Dergunova, E. N. Popova, and L. A. Rodionova, “The Experimental Investigation of Copper for Superconductors,” Physica C 354, 371–374 (2001).

    Article  CAS  Google Scholar 

  6. M. D. Sumption and E. W. Collings, “Influence of Chromium Diffusion and Related Phenomena on the Resistance Ratios of Bar and Cr-Plated Nb3Sn Strands,” Proceedings of Workshop on the Effects of Chromium Coating on Nb 3 Sn Superconductor Strand (Proceedings CONF-9404128, Lawrence Livermore Natl. Lab., 1994).

  7. A. Vorobieva, A. Shikov, V. Pantsyrnyi, E. Dergunova, A. Silaev, N. Beliakov, N. Kozlenkova, M. Polikarpova, K. Mareev, O. Malafeeva, and S. Kuznetsov, “The Study of Cu Fraction Influence on Nb3Sn Strand for ITER Performance,” IEEE Trans. Appl. Supercond. 10, 1004–1007 (2000).

    Article  Google Scholar 

  8. J. Kim, K. Sim, K. Jang, S. Je, P. Park, and K. Kim, “Effects of Cr Diffusion in RRR Values of Cr-Plated Nb3Sn Strands Fabricated by Internal-Tin Process,” IEEE Trans. Appl. Supercond. 18, 1043–1047 (2008).

    Article  CAS  Google Scholar 

  9. A. Pontau, “A Search for Chromium in Copper,” Proceedings ofWorkshop on the Effects of Chromium Coating on Nb 3 Sn Superconductor Strand (Proceedings CONF-9404128, Lawrence Livermore Natl. Lab., 1994).

  10. M. C. Jewell, T. Boutboul, L.-R. Oberli, F. Liu, Y. Wu, A. Vostner, T. Isono, Y. Takahashi, S.-H. Park, A. Shikov, A. Vorobieva, N. Martovetsky, K. Seo, D. Bessette, and A. Devred, “World-Wide Benchmarking of ITER Nb3Sn Strand Test Facilities” IEEE Trans. Appl. Supercond. 20, 1500–1503 (2010).

    Article  CAS  Google Scholar 

  11. Standard MEK 61788-11 IEC: 2003(E). Residual Resistance Ratio of Nb 3 Sn Composite Superconductors.

  12. E. R. Gustav and E. R. Schulze, Metallophysik (Akademie-Verlag, Berlin, 1967; Mir, Moscow, 1971).

    Google Scholar 

  13. J. Linde, “An Experimental Study of the Resistivity-Concentration Dependence of Alloys,” Helv. Phys. Acta 41, 1007–1015 (1968).

    CAS  Google Scholar 

  14. R. N. Randall, “Quality Assurance Requirements, Proceedings of Industry Participation Workshop “Chromium Electroplating of Superconductor Strand” (December, 1994, Lawrence Livermore Natl. Lab., 1994), pp. 35–47; http://www.osti.gov/bridge/servlets/purl/52822-Qsr4J4/webviewable/52822.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Popova.

Additional information

Original Russian Text © D.S. Novosilova, I.M. Abdyukhanov, A.E. Vorob’eva, E.A. Dergunova, M.V. Polikarpova, K.A. Mareev, N.V. Traktirnikova, E.N. Popova, I.L. Deryagina, S.V. Sudareva, 2012, published in Fizika Metallov i Metallovedenie, 2012, Vol. 113, No. 10, pp. 1008–1013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novosilova, D.S., Abdyukhanov, I.M., Vorob’eva, A.E. et al. Influence of diffusion annealing on residual resistivity of Nb3Sn-based chromium-plated strands obtained by a bronze process. Phys. Metals Metallogr. 113, 957–962 (2012). https://doi.org/10.1134/S0031918X12100080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12100080

Keywords

Navigation