Skip to main content
Log in

Effect of Gamma Radiation on Viability of a Soil Microbial Community under Conditions of Mars

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

It is supposed that the biosphere could be formed under conditions of early Mars, and it is cryo-conserved up to now. The period of its preservation is limited by the effect of ionizing radiation. The viability of a soil microbial community thtat underwent gamma radiation (100 kGy) under simulated conditions (‒50°C, 1 Torr) of the surface layer of the Martian regolith is studied. Irradiation did not result in the death of the microbial community: the number of living cells, metabolic activity, and functional diversity remained high. The data obtained suggest that microorganisms could be preserved in regolith of Mars for no less than 1.3 m.y. and in general contribute to the modern concepts concerning radiation resistance of the Earth’s life form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Atlas, R.M., Handbook of Microbiological Media, CRC Press, 2010.

    Book  Google Scholar 

  2. Battista, J.R., Earl, A.M., and Park, M.J., Why is Deinococcus radiodurans so resistant to ionizing radiation?, Trends Microbiol., 1999, vol. 7, no. 9, pp. 362–365.

    Article  Google Scholar 

  3. Bauermeister, A., Moeller, R., Reitz, G., et al., Effect of relative humidity on Deinococcus radiodurans resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation, Octolasion cyaneum, Microb. Ecol., 2011, vol. 61, no. 3, pp. 715–722.

    Article  Google Scholar 

  4. Baumstark-Khan, C. and Facius, R., Life under conditions of ionizing radiation, in Astrobiology: The Quest for the Conditions of Life Astrobiology, Horneck, G. and Baumstark-Khan, C., Eds., Berlin–Heidelberg: Springer, 2002, pp. 261–284.

    Google Scholar 

  5. Beaty, D.W., Clifford, S.M., Borg, L.E., et al., Key science questions from the second conference on early Mars: Geologic, hydrologic, and climatic evolution and the implications for life, Astrobiology, 2005, vol. 5, no. 6, pp. 663–689.

    Article  Google Scholar 

  6. Brown, K.A., Biochemical activities in peat sterilized by gamma-irradiation, Soil Biol. Biochem., 1981, vol. 13, no. 6, pp. 469–474.

    Article  Google Scholar 

  7. Carr, M.H., The Martian drainage system and the origin of valley networks and fretted channels, J. Geophys. Res. Planets, 1995, vol. 100, no. E4, pp. 7479–7507.

    Article  Google Scholar 

  8. Carr, M.H., Water on Mars, New York: Oxford Univ. Press, 1996.

    Google Scholar 

  9. Cox, M.M. and Battista, J.R., Deinococcus radiodurans—the consummate survivor, Nature Rev. Microbiol., 2005, vol. 3, no. 11, pp. 882–892.

    Article  Google Scholar 

  10. Dartnell, L.R., Hunter, S.J., Lovell, K.V., et al., Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria, Astrobiology, 2010, vol. 10, no. 7, pp. 717–732.

    Article  Google Scholar 

  11. DiRuggiero, J., Wierzchos, J., Robinson, C.K., et al., Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert, Biogeosciences, 2013, vol. 10, no. 4, p. 2439.

    Article  Google Scholar 

  12. Dohm, J.M., Baker, V.R., Boynton, W.V., et al., GRS evidence and the possibility of paleooceans on Mars, Planet. Space Sci., 2009, vol. 57, no. 5, pp. 664–684.

    Article  Google Scholar 

  13. El Maarry, M.R., Dohm, J.M., Marzo, G.A., et al., Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars, Icarus, 2012, vol. 217, no. 1, pp. 297–314.

    Article  Google Scholar 

  14. El-Registan, G.I., Mulyukin, A.L., Nikolaev, Y.A., et al., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology, 2006, vol. 75, no. 4, pp. 380–389.

    Article  Google Scholar 

  15. El-Sayed, W.S. and Ghanem, S., Bacterial community structure change induced by gamma irradiation in hydrocarbon contaminated and uncontaminated soils revealed by PCR-denaturing gradient gel electrophoresis, Biotechnology, 2009, vol. 8, no. 1, pp. 78–85.

    Article  Google Scholar 

  16. Fairén, A.G., Davila, A.F., Lim, D., et al., Astrobiology through the ages of Mars: The study of terrestrial analogues to understand the habitability of Mars, Astrobiology, 2010, vol. 10, no. 8, pp. 821–843.

    Article  Google Scholar 

  17. Fassett, C.I. and Head, J.W., Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology, Icarus, 2008, vol. 198, no. 1, pp. 37–56.

    Article  Google Scholar 

  18. Ferreira, A.C., Nobre, M.F., Moore, E., et al., Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus, Extremophiles, 1999, vol. 3, no. 4, pp. 235–238.

    Article  Google Scholar 

  19. Garland, J.L. and Mills, A.L., Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization, Appl. Environ. Microbial., 1991, vol. 57, no. 8, pp. 2351–2359.

    Google Scholar 

  20. Garland, J.L. and Mills, A.L., A community-level physiological approach for studying microbial communities, in Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities, Ritz, K., Dighton, J., and Giller, K.E., Eds., John Wiley and Sons Ltd, 1994, pp. 77–83.

    Google Scholar 

  21. Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., et al., Microbial populations in Antarctic permafrost: Biodiversity, state, age, and implication for astrobiology, Astrobiology, 2007, vol. 7, no. 2, pp. 275–311.

    Article  Google Scholar 

  22. Gorlenko, M.V. and Kozhevin, P.A., Differentiation of soil microbial communities by multisubstrate testing, Microbiology, 1994, vol. 63, no. 2, pp. 158–161.

    Google Scholar 

  23. Gorlenko, M.V. and Kozhevin, P.A., Mul’tisubstratnoe testirovanie prirodnykh mikrobnykh soobshchestv (Multisubstrate Testing of Natural Microbial Communities), Moscow: MAKS Press, 2005.

    Google Scholar 

  24. Groemer, G., Soucek, A., Frischauf, N., et al., The MARS2013 Mars analog mission, Astrobiology, 2014, vol. 14, no. 5, pp. 360–376.

    Article  Google Scholar 

  25. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford Univ. Press, USA, 2015.

    Book  Google Scholar 

  26. Hassler, D.M., Zeitlin, C., Wimmer-Schweingruber, R.F., et al., Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover, Science, 2014, vol. 343, no. 6169, p. 1244797.

    Article  Google Scholar 

  27. Hynek, B.M., Beach, M., and Hoke, M.R.T., Updated global map of Martian valley networks and implications for climate and hydrologic processes, J. Geophys. Res. Planets, 2010, vol. 115, no. E9.

  28. Impey, C. and Henry, H., Dreams of Other Worlds: The Amazing Story of Unmanned Space Exploration, Princeton Univ. Press, 2016.

    Book  Google Scholar 

  29. Irwin, R.P., Howard, A.D., Craddock, R.A., and Moore, J.M., An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development, J. Geophys. Res. Planets, 2005, vol. 110, no. E12.

  30. Ivanov, M.A., Hiesinger, H., Erkeling, G., and Reiss, D., Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean, Icarus, 2014, vol. 228, pp. 121–140.

    Article  Google Scholar 

  31. Kryazhevskikh, N.A., Demkina, E.V., Loiko, N.G., et al., Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains, Microbiology, 2013, vol. 82, no. 1, pp. 29–42.

    Article  Google Scholar 

  32. Manaeva, E.S., Lomovtseva, N.O., Kostina, N.V., et al., Biological activity of soils in the settlements of southern (Microtus rossiaemeridionalis) and bank (Clethrionomys glareolus) voles, Biol. Bull., 2014, vol. 41, no. 1, pp. 80–88.

    Article  Google Scholar 

  33. Manucharova, N.A., The microbial destruction of chitin, pectin, and cellulose in soils, Euras. Soil Sci., 2009, vol. 42, no. 13, p. 1526.

    Article  Google Scholar 

  34. Mattimore, V. and Battista, J.R., Radioresistance of Deinococcus radiodurans: Functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation, J. Bacterial., 1996, vol. 178, no. 3, pp. 633–637.

    Article  Google Scholar 

  35. McNamara, N.P., Black, H.I.J., Beresford, N.A., and Parekh, N.R., Effects of acute gamma irradiation on chemical, physical and biological properties of soils, App. Soil Ecol., 2003, vol. 24, no. 2, pp. 117–132.

    Article  Google Scholar 

  36. Mulyukin, A.L., Demkina, E.V., Kozlova, A.N., and Soina, V.S., Synthesis of anabiosis autoinducers by non-spore-forming bacteria as a mechanism regulating their activity in soil and subsoil sedimentary rocks, Microbiology, 2001, vol. 70, no. 5, pp. 535–541.

    Article  Google Scholar 

  37. Musilova, M., Wright, G., Ward, J.M., and Dartnell, L.R., Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance, Astrobiology, 2015, vol. 15, no. 12, pp. 1076–1090.

    Article  Google Scholar 

  38. Osinski, G.R., Tornabene, L.L., Banerjee, N.R., et al., Impact-generated hydrothermal systems on Earth and Mars, Icarus, 2013, vol. 224, no. 2, pp. 347–363.

    Article  Google Scholar 

  39. Pacelli, C., Selbmann, L., Zucconi, L., et al., Survival, DNA integrity, and ultrastructural damage in Antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation, Astrobiology, 2017, vol. 17, no. 2, pp. 126–135.

    Article  Google Scholar 

  40. Parro, V., de Diego-Castilla, G., Moreno-Paz, M., et al., A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: Implications for the search for life on Mars, Astrobiology, 2011, vol. 11, no. 10, pp. 969–996.

    Article  Google Scholar 

  41. Pavlov, A.K., Blinov, A.V., and Konstantinov, A.N., Sterilization of Martian surface by cosmic radiation, Planet. Space Sci., 2002, vol. 50, no. 7, pp. 669–673.

    Article  Google Scholar 

  42. Pavlov, A.K., Shelegedin, V.N., Vdovina, M.A., and Pavlov, A.A., Growth of microorganisms in Martian-like shallow subsurface conditions: Laboratory modelling, Int. J. Astrobiol., 2010, vol. 9, no. 01, pp. 51–58.

    Article  Google Scholar 

  43. Pitonzo, B.J., Amy, P.S., and Rudin, M., Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site, Radiat. Res., 1999a, vol. 152, no. 1, pp. 64–70.

    Article  Google Scholar 

  44. Pitonzo, B.J., Amy, P.S., and Rudin, M., Resuscitation of microorganisms after gamma irradiation, Radiat. Res., 1999b, vol. 152, no. 1, pp. 71–75.

    Article  Google Scholar 

  45. Rainey, F.A., Ray, K., Ferreira, M., et al., Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample, App. Environm. Microbiol., 2005, vol. 71, no. 9, pp. 5225–5235.

    Article  Google Scholar 

  46. Romanovskaya, V.A., Rokitko, P.V., Malashenko, I., et al., Sensitivity of soil bacteria isolated from the alienated zone around the chernobyl Nuclear Power Plant to various stress factors, Microbiology, 1999, vol. 68, no. 4, pp. 465–469.

    Google Scholar 

  47. Sheremata, T.W., Yong, R.N., and Guiot, S.R., Simulation and sterilization of a surrogate soil organic matter for the study of the fate of trichloroethylene in soil, Commun. Soil Sci, Plant Anal., 1997, vol. 28, nos. 13–14, pp. 1177–1190.

    Article  Google Scholar 

  48. Skyring, G.W. and Thompson, J.P., The availability of organic matter in dried and undried soil, estimated by an anaerobic respiration technique, Plant Soil, 1966, vol. 24, no. 2, pp. 289–298.

    Article  Google Scholar 

  49. Smith, H.D. and McKay, C.P., Drilling in ancient permafrost on Mars for evidence of a second genesis of life, Planet. Space Sci., 2005, vol. 53, no. 12, pp. 1302–1308.

    Article  Google Scholar 

  50. Stotzky, G. and Mortensen, J.L., Effect of gamma radiation on growth and metabolism of microorganisms in an organic soil, Soil Sci. Soc. Am. J., 1959, vol. 23, no. 2, pp. 125–127.

    Article  Google Scholar 

  51. Thompson, J.P., Soil sterilization methods to show VA‑mycorrhizae aid P and Zn nutrition of wheat in vertisols, Soil Biol. Biochem., 1990, vol. 22, no. 2, pp. 229–240.

    Article  Google Scholar 

  52. Verseux, C., Baqué, M., Cifariello, R., et al., Evaluation of the resistance of Chroococcidiopsis spp. to sparsely and densely ionizing irradiation, Astrobiology, 2017, vol. 17, no. 2, pp. 118–125.

    Article  Google Scholar 

  53. Vorobyova, E., Soina, V., Gorlenko, M., et al., The deep cold biosphere: Facts and hypothesis, FEMS Microbiol. Rev., 1997, vol. 20, nos. 3–4, pp. 277–290.

    Article  Google Scholar 

  54. Wassmann, M., Moeller, R., Reitz, G., and Rettberg, P., Adaptation of Bacillus subtilis cells to Archean-like UV climate: Relevant hints of microbial evolution to remarkably increased radiation resistance, Astrobiology, 2010, vol. 10, no. 6, pp. 605–615.

    Article  Google Scholar 

  55. Wierzchos, J., Rios, A., and Ascaso, C., Microorganisms in desert rocks: The edge of life on Earth, Int. Microbial., 2013, vol. 15, no. 4, pp. 172–182.

    Google Scholar 

  56. Yardin, M.R., Kennedy, I.R., and Thies, J.E., Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilisers and bio-pesticides, Rad. Phys Chem., 2000, vol. 57, no. 3, pp. 565–568.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-12-01184; Program of the Russian Academy of Sciences “Evolution of the Organic World and Planetary Processes” (subprogram 2) and the Russian Science Foundation, project no. 14-50-00029, as related to bacteria culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Cheptsov.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheptsov, V.S., Vorobyova, E.A., Gorlenko, M.V. et al. Effect of Gamma Radiation on Viability of a Soil Microbial Community under Conditions of Mars. Paleontol. J. 52, 1217–1223 (2018). https://doi.org/10.1134/S0031030118100088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030118100088

Keywords:

Navigation