Skip to main content
Log in

Life in Ancient Cooling Lava

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The study of volcanogenic and volcanogenic–sedimentary rocks (Early Proterozoic pillow lava of Karelia and South Africa), where diverse fossilized bacteria (prokaryotes) and probably even eukaryotes shows that, during this early period, conditions of cooling lava flows and igneous rocks were favorable for bacterial development and colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. As magmatic melt reaches the earth’s surface, a magmatic eruption occurs, the character of which is determined by the composition of melt, its temperature and pressure, concentration of volatile components and other parameters. In case of terrestrial eruptions of huge volumes of basaltic lava within a geologically short time, lava formations with a flat surface and typical stepped relief, which were called plateau basalts or trapps (from the Swedish word trappa meaning “stairs”), cover vast areas. Submarine and subglacial eruptions (usually at a low eruption rate) lead to the formation of pillow lavas, which are likely the most widespread type of consolidated lavas on the Earth (Moore, 1975; Walker, 1992; Sigurdsson, 1999).

  2. Recent basalts are basaltic lava with solidified crust of volcanic glass, formed due to rapid cooling of liquid lava at the boundary with marine water. With time, glass becomes devitrified and, as a result of submarine weathering (halmyrolysis), it, along with minerals in basalts, is gradually replaced by secondary minerals, i.e., loses glass properties.

REFERENCES

  1. Altermann, W. and Kazmierczak, J., Archean microfossils: A reappraisal of early life on Earth, Res. Microbiol., 2003, vol. 154, pp. 611–617.

    Article  Google Scholar 

  2. Arabadzhi, M.S., V nedrakh golubogo kontinenta (In the Entrails of Blue Continent), Moscow: Nedra, 1988.

    Google Scholar 

  3. Astafieva, M.M., Framboidal structures of black shales (Cambrian Period of the Siberian Platform and Permian of the Barents Sea shelf), Paleontol. Zh., 2005a, no. 1, pp. 3–8.

  4. Astafieva, M.M., Archean of Karelia and bacterial paleontology, in Evolyutsiya biosfery i bioraznoobraziya. K 70-letiyu A.Yu. Rozanova (Evolution of the Biosphere and Biodiversity, Devoted to the 70th Anniversary of A.Yu. Rozanov), Moscow: KMK. 2006a, pp. 120–128.

    Google Scholar 

  5. Astafieva, M.M., Hoover, R.B., Rozanov, A.Yu., and Vrevskiy, A.B., “Fossil microorganisms in Archaean”, Proc. SPIE, 2006b, vol. 6309, pp. 630904-1–630904-10.

    Article  Google Scholar 

  6. Astafieva, M.M., Rozanov, A.Yu., Cornell, D.H., and Hoover, R.B., Development of living organisms on the lava-water interface of Palaeoproterozoic Ongeluk lavas of South Africa, Proc. SPIE, 2008, vol. 7097, pp. 709703-1–709703-13.

    Article  Google Scholar 

  7. Astafieva, M.M., Rozanov, A.Yu., and Hoover, R.B., Framboids, their structure and origins, Paleontol. Zh., 2005b, no. 5, pp. 1–7.

  8. Baross, J.A. and Deming, J.W., Growth of “black “smoker” bacteria at temperatures of at least 250°C, Nature, 1983, vol. 303, pp. 423–426.

    Article  Google Scholar 

  9. Boston, P.J., Spilde, M.N., Northup, D.E., et al., Cave biosignature suites: Microbes, minerals, and Mars, Astrobiology, 2001, vol. 1, pp. 25–55.

    Article  Google Scholar 

  10. Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Kranendonk, M.J., Lindsay, J.F., Steele, A., and Grassineau, N.V., Questioning the evidence for Earth’s oldest fossils, Nature, 2002, vol. 416, pp. 76–81.

    Article  Google Scholar 

  11. Brasier, M., Green, O., Lindsay, J., and Steele, A., Earth’s oldest (approximately 3.5 Ga) fossils and the “Early Eden hypothesis”: questioning the evidence, Orig. Life Evol. Biosph. J. Int. Soc. Study Origin Life, 2004, vol. 34, no. 1, pp. 257–269.

    Article  Google Scholar 

  12. Cornell, D.H., Schütte, S.S., and Eglington, B.L., The Ongeluk basaltic andesite formation in Griqualand West, South Africa: Submarine alteration in a 2222 Ma Proterozoic sea, Precambr. Res., 1996, vol. 79, pp. 101–123.

    Article  Google Scholar 

  13. Devouagard, B., Posfai, M., Xin, Hua., Bazylinski, D.A., Frankel, R.B., and Busek, P.R., Magnetite from magnetotactic bacteria: Size distributions and twinning, Am. Mineral., 1998, vol. 83, pp. 1387–1398.

    Article  Google Scholar 

  14. Fisk, M.R., Storrie-Lombardi, M.C., Douglas, S., Popa, R., et al., Evidence of biological activity in Hawaiian subsurface basalts, Geochem. Geophys. Geosyst., 2003, vol. 4, p. 2003GC000387.

  15. Fisk, M.R., Storrie-Lombardi, M.C., and Josef, J., The water-igneous rock interface: Potential microbial habitats on Mars, Proc. SPIE, 2006a, vol. 6309 (Technical Abstract Summary Digest, San-Diego Convention Center San-Diego, California USA, 13–17 August 2006: Instruments, Methods, and Missions for Astrobiology IX, SPIE 6309-3, p. 176.

  16. Fisk, M.R., Storrie-Lombardi, M.C., and Josef, J.A., Aqueous biotic and abiotic alteration of silicate rock: Evaluation of landing sites on Mars for their potential of revealing evidence for life, Proc. SPIE, 2006b, vol. 6309 (Instruments, Methods, and Missions for Astrobiology IX, Hoover, R.B., Levin, G.V., and Rozanov, A.Yu., Eds.) pp. 630903-1–630903-9.

  17. Friedmann, E.I. and Koriem, A.M., Life on Mars: How it disappeared (if it was ever there), Adv. Space Res., 1989, vol. 9, no. 6, pp. 167–172.

    Article  Google Scholar 

  18. Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H., and de Wit, M., Early life recorded in Archean pillow lavas, Science, 2004, vol. 304, pp. 578–581.

    Article  Google Scholar 

  19. Furnes, H., Banerjee, N.R., Staudigel, H., Muehlenbachs, K., McLoughlin, N., de Wit, M., and van Kranendonk, M., Comparing petrographic signatures of boialteration in Recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks, Precamb. Res., 2007, vol. 158, pp. 156–176.

    Article  Google Scholar 

  20. Gerasimenko, L.M. and Ushatinskaya, G.T., Cyanobacteria, cyanobacterial assemblages, mats, and biofilms, in Bakterial’naya paleontologiya (Bacterial Paleontology), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2002, pp. 36–46.

    Google Scholar 

  21. Gerasimenko, L.M. and Zavarzin, G.A., Relict cyanobacterial assemblages, in Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-Anthropogene Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 222–254.

    Google Scholar 

  22. Godovikov, A.A., Mineralogiya (Mineralogy), Moscow: Nedra, 1975.

    Google Scholar 

  23. Grobler, N.J. and Botha, B.J.V., Pillow-lavas and hyaloclastite in the Ongeluk Andesite Formation in a road-cutting west of Griquatown, South Africa, Trans. Geol. Soc. S. Africa, 1976, vol. 79, pp. 53–57.

    Google Scholar 

  24. Knoll, A.H., Neoproterozoic evolution and environmental change, in Early Life on Earth, New York: Columbia Univ. Press, 1994, pp. 439–449.

    Google Scholar 

  25. Knoll, A.H. and Barghoorn, E.S., Archaean microfossils showing cell division from the Swaziland System of South Africa, Science, 1977, vol. 198, pp. 396–398.

    Article  Google Scholar 

  26. Krasnoshchekova, L.A., Atlas osnovnykh tipov magmaticheskikh porod: uchebnoe posobie. Tomskii politekhnicheskii universitet (Atlas of the Main Types of Magmatic Rocks: Handbook: Tomsk Polytechnical University), Tomsk, Tomsk. Politekh. Univ., 2012.

    Google Scholar 

  27. Kulikov, V.S., Pana-Kuolajarva structure, Komatiity i vysokomagnezial’nye vulkanity rannego dokembriya Baltiiskogo shchita (Komatites and High-magnesia Vulcanites of the Early Pre-Cambrian of the Baltic Shield), Leningrad: Nauka, 1988, pp. 62–68.

    Google Scholar 

  28. Lougheed, M.S. and Mancuso, J.J., Hematite framboids in the Nagaunee Iron Formation, Michigan: Evidence for their biogenic origin, Econom. Geol., 1973, vol. 68, pp. 202–209.

    Article  Google Scholar 

  29. Lysnes, K., Thorseth, I.H., Steinsbu, B.O., et al., Microbial community diversity in seafloor basalts from the Arctic spreading ridges, FEMS Microbiol. Ecol., 2004, vol. 50, no. 3, pp. 213–230.

    Article  Google Scholar 

  30. McLoughlin, N., Furnes, H., Banerjee, N.R., et al., Volcanic glass a habitat for the origins and evolution of microbial life, in II International Conference on the Biosphere Origin and Evolution, October 28–November 2, Loutraki, Greece: Abstracts, Loutraki, 2007, pp. 16–17.

  31. Moore, J.G., Mechanism of formation of pillow lava, Am. Sci., 1975, vol. 63, no. 3, pp. 269–277.

    Google Scholar 

  32. Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code of Russia: Magmatic, Metamorphic, Metasomatic, and Impoct Formations), St. Petersburg, Vseross. Nauchno-Issled. Geol. Inst., 2008.

  33. Puchtel, I.S., Haase, K.M., Hofmann, A.W., et al., Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Schield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 6, pp. 1205–1222.

    Article  Google Scholar 

  34. Puchtel, I.S., Brugmann, G.E., Hofmann, A.W., et al., On isotope systematics of komatiitic basalts from the Vetreny Belt, Baltic Shield: Evidence for a chondritic source of the 2.45 Ga plume, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 588–599.

    Article  Google Scholar 

  35. Pushcharovsky, Yu.M., Skolotnev, S.G., Peive, A.A., et al., Geologiya i metallogeniya Sredinno-Atlanticheskogo khrebta: 5°–7° s.sh. (Geology and Metallogeny of the Mid-Atlantic Ridge: 5–7° N), Moscow: GEOS. 2004.

  36. Rasmussen, B., Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulfide deposit, Nature, 2000, vol. 405, pp. 676–679.

    Article  Google Scholar 

  37. Resolution of the 3rd All-Russia Meeting on the General Questions of Pre-Cambrian Stratification, Stratigr. Geol. Korrelyatsiya, 2001, vol. 9, no. 3, pp. 101–106.

  38. Rozanov, A.Yu., Conditions of life on the early Earth after 4 billion years ago, Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2009, pp. 185–202.

    Google Scholar 

  39. Rozanov, A.Yu. and Astafieva, M.M., The evolution of the Early Precambrian geobiological systems, Paleontol. J., 2009, vol. 43, no. 8, pp. 911–927.

    Article  Google Scholar 

  40. Schopf, J.W., Ed., Earth’s Biosphere, Its Origin and Evolution, Princeton: Univ. Press, 1983.

    Google Scholar 

  41. Schopf, J.W., Microfossils of the Early Archean Apex Chert: New evidence of the antiquity of life, Science, 1993, vol. 260, no. 5108, pp. 640–646.

    Article  Google Scholar 

  42. Sharkov, E.V. and Bogina, M.M., Evolution of magmatism in the Paleoproterozoic: Geology, geochemistry, isotopy, Stratigrafiya. Geol. Korrelyatsiya, 2006, vol. 14, no. 4, pp. 3–27.

    Google Scholar 

  43. Sharkov, E.V., Evseeva, K.A., Krasivskaya, I.S., and Chistyakov, A.V., Magmatic systems of the Early Paleoproterozoic Baltic Great Igneous Province of siliceous high-magnesia (boninite-like) series, Geol. Geofiz., 2005, no. 9, pp. 968–980.

  44. Sharkov, E.V., Shatagin, K.N., Krasivskaya, I.S., Chernyshev, I.V., Bortnikov, N.S., Chistyakov, A.V., Trubkin, N.V., and Kramchaninov, A.Yu., Pillow lavas of the Sierra Leone polygon, Mid-Atlantic ridge, 5°–7° N: Sr-Nd isotope systematics, geochemistry, and petrology, Petrologiya, 2008, vol. 16, no. 4, pp. 356–375.

    Google Scholar 

  45. Sharkov, E.V., Trubkin, N.V., Krasivskaya, I.S., Bogatikov, O.A., Mokhov, A.V., Chistyakov, A.V., and Evseeva, K.A., Structural features and composition of the most ancient volcanic glass in boninite-like lavas of the Early Paleoproterozoic of southern Karelia (Russia), Petrologiya, 2004, vol. 12, no. 3, pp. 264–280.

    Google Scholar 

  46. Sigurdsson, H., The history of volcanology, in Encyclopedia of volcanoes, Sigurdsson, H., Ed., New York: Academic Press, 1999, pp. 15–37.

    Google Scholar 

  47. Stetter, K.O., Hyperthermofiles in the history of life, Philos. Trans. Roy. Soc., 2006, vol. B 361, pp. 1837–1843.

  48. Stetter, K.O., Fiala, G., Huber, G., and Segerer, A., Hyperthermofilic microorganisms, FEMS Microbiol. Rev., 1990, vol. 75, pp. 117–124.

    Article  Google Scholar 

  49. Stevens, T.O. and McKinley, J.P., Lithoautotrophic microbial ecosystems in deep basalt aquifers, Science, 1995, vol. 270, pp. 450–454.

    Article  Google Scholar 

  50. Sugitani, K., Mimura, K., Takeuchi, M., Lepot, K., Ito, S., and Javaux, E.J., Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils, Geobiology, 2015, vol. 13, pp. 507–521.

    Article  Google Scholar 

  51. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, N., and Horikoshi, K., Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, PNAS, 2008, vol. 105, no. 31, pp. 10949–10954.

    Article  Google Scholar 

  52. Thorseth, I.H., Torsvik, T., Torsvik, V., Daae, F.L., and Pedersen, R.B., Keldysh-98 scientific party, 2001: Diversity of life in ocean floor basalts, Earth Planet Sci. Lett., 2001, vol. 194, pp. 31–37.

    Article  Google Scholar 

  53. Timofeev, B.V., Drevneishaya flora Pribaltiki (Most Ancient Flora of the Baltic Region), Moscow: Gostoptekhizdat, 1959.

    Google Scholar 

  54. Tolkovyi slovar’ po pochvovedeniyu (Explanatory Dictionary on Soil Science), Moscow: Nauka, 1975.

  55. Walker, G.P.L., Morphometric study of pillow-size spectrum among pillow lavas, Bull. Volcanol., 1992, vol. 54, no. 6, pp. 459–474.

    Article  Google Scholar 

  56. Walter, M.R., Archaean stromatolites: Evidence of the Earth’s earliest benthos, in Earth’s" Earliest Biosphere: Its Origin and Evolution, Princeton: Princeton Univ. Press, 1983, pp. 187–213.

    Google Scholar 

  57. Zavarzin, G.A., Development of microbial assemblages in the history of the Earth, Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-Anthropogene Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 212–221.

    Google Scholar 

  58. Zavarzin, G.A., Establishment of the system of the biogeochemical cycles, Paleontol. Zh., 2003a, no. 6, pp. 16–24.

  59. Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures on Historical Microbiology), Moscow, Nauka, 2003b.

    Google Scholar 

  60. Zavarzin, G.A., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover, R.B., Gerasimenko, L.M., and Ragozina, A.L., Atlas of microorganisms from ancient phosphorites of Khubsugul (Mongolia). Huntsville, Alabama, USA, 2000, p. 168.

  61. Zhang, Chuanlun, Vali, H., Romanek, Ch.H., et al., Formation of single-domain magnetite by a thermophilic bacterium, Am. Mineral., 1998, vol. 83, pp. 1409–1418.

    Article  Google Scholar 

  62. Zhegallo, E.A., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover, R.B., Gerasimenko, L.M., and Ragozina, A.L., Atlas of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia), Huntsville, Alabama, USA, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Astafieva.

Additional information

Translated by D. Voroschuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafieva, M.M. Life in Ancient Cooling Lava. Paleontol. J. 52, 1131–1147 (2018). https://doi.org/10.1134/S0031030118100052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030118100052

Keywords:

Navigation