Advertisement

Paleontological Journal

, Volume 52, Issue 2, pp 109–122 | Cite as

Complementary Transformations of Buried Organic Residues and the Ambient Sediment: Results of Long-Term Taphonomic Experiments

  • E. B. Naimark
  • N. M. Boeva
  • M. A. Kalinina
  • L. V. Zaytseva
Article

Abstract

Long-term (18 month) experiments were conducted, burying soft bodied organisms (Artemia salina, Crustacea) in marine sediment. For the first time in experimental taphonomy, the mineralogical transformation of the sediment that accompanied the process of decomposition was correlated with the degree of preservation. To obtain different quantitative characteristics of preservation, we used four dilutions of marine water (marine water: to fresh water as 1: 0; 1: 1, 1: 4, 1: 9).It was shown that higher dilutions corresponded to lower degrees of preservation. The proportion of kaolinite decreased in the marine sediment and, accordingly, the amorphous phase increased; in the diluted variants, the opposite pattern was revealed: the crystalline kaolinite phase increased and the amorphous phase decreased. Since no differences in the chemical composition of the residues from different dilutions were identified, the effect of sea salt concentration on preservation was considered to be negligible. A plausible hypothesis suggested that dissolving of kaolinite slows of organic decomposition and the beginnings of mineralization. Due to the acidic hydrolysis of kaolinite, Al cations appear in the solution; subsequently proteins are converted into insoluble forms, and thus escape from bacterial degradation. These taphonomic experiments reveal some overlooked physicochemical aspects important for the mechanisms of exceptional preservation.

Keywords

experimental taphonomy Lagerstätten fossilization marine sediments kaolinite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P.A., The role of anoxia in the decay and mineralization of proteinaceous macro-fossils, Paleobiology, 1988, vol. 14, no. 2, pp. 139–154.CrossRefGoogle Scholar
  2. Berner, R.A., Calcium carbonate concretions formed by the decomposition of organic matter, Science, 1968, vol. 159, no. 3811, pp. 195–197.CrossRefGoogle Scholar
  3. Bortnikov, N.S., Novikov, V.M., Savko, A.D., Boeva, N.M., Zhegallo, E.A., Bushueva, E.B., Krainov, A.V., and Dmitriev, D.A., Structural-morphological features of kaolinite from clayey rocks subjected to different stages of lithogenesis: Evidence from the Voronezh anteclise, Lithol. Miner. Resour., 2013, vol. 48, no. 5, pp. 384–397.CrossRefGoogle Scholar
  4. Boswell, P.G.H., Muddy Sediments: Some Geotechnical Studies for Geologists, Engineers and Soil Scientists, Cambridge: Cambridge Univ. Press, 1961.Google Scholar
  5. Butler, A.D., Cunningham, J.A., Budd, G.E., and Donoghue, P.C.J., Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization, Proc. R. Soc. B, 2015, vol. 282, no. 1808, p. 20150476.CrossRefGoogle Scholar
  6. Butterfield, N.J., Exceptional fossil preservation and the Cambrian explosion, Integr. Comp. Biol., 2003, vol. 43, no. 1, pp. 166–177.CrossRefGoogle Scholar
  7. Butterfield, N.J., Balthasar, U., and Wilson, L.A., Fossil diagenesis in the Burgess Shale, Palaeontology, 2007, vol. 50, no. 3, pp. 537–543.CrossRefGoogle Scholar
  8. De Chaffoy de Courcelles, D., and Kondo, M., Lipovitellin from the crustacean, Artemia salina, biochemical analysis of lipovitellin complex from the yolk granules, J. Biol. Chem., 1980, vol. 255, no. 14, pp. 6727–6733.Google Scholar
  9. Dzik, J., Zhao Yuan-long, and Zhu Mao-yan, Mode of life of the Middle Cambrian eldonioid lophophorate Rotadiscus, Palaeontology, 1997, vol. 40, no. 2, pp. 385–396.Google Scholar
  10. Fiore, S., Huertas, F.J., Huertas, F., and Linares, J., Morphology of kaolinite crystals synthesized under hydrothermal conditions, Clays Clay Miner., 1995, vol. 43, no. 3, pp. 353–360.CrossRefGoogle Scholar
  11. Forchielli, A., Steiner, M., Kasbohm, J., Hu Shi-xue, and Keupp, H., Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 398, pp. 59–85.CrossRefGoogle Scholar
  12. Gabbott, S.E., Zalasiewicz, J., and Collins, D., Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia, J. Geol. Soc., 2008, vol. 165, no. 1, pp. 307–318.CrossRefGoogle Scholar
  13. Gaines, R.R., Hammarlund, E.U., Hou Xian-guang, Qi Chang-shi, Gabbott, S.E., Zhao Yuan-long, Peng Jin, and Canfield, D.E., Mechanism for Burgess Shale-type preservation, Proc. Nat. Acad. Sci. U.S.A., 2012, vol. 109, no. 14, pp. 5180–5184.CrossRefGoogle Scholar
  14. Gostling, N.J., Dong Xi-ping, and Donoghue, P.C.J., Ontogeny and taphonomy: an experimental taphonomy study of the development of the brine shrimp Artemia salina, Palaeontology, 2009, vol. 52, no. 1, pp. 169–186.CrossRefGoogle Scholar
  15. Horobin, R.W., Acridines and phenanthridines, in Conn’s Biological Stains, A Handbook of Dyes, Stains, and Fluorochromes for Use in Biology and Medicine, Horobin, R.W. and Kiernan, J.A., Eds., Oxford: BIOS Sci. Publ., 2002, 10th ed., Ch. 17, pp. 253–258.Google Scholar
  16. Lin Jih-pai, Zhao Yuan-long, Rahman, I.A., Xiao Shu-hai, and Wang Yue, Bioturbation in Burgess Shale-type Lagerstätten— Case study of trace fossil–body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2010, vol. 292, nos. 1–2, pp. 245–256.CrossRefGoogle Scholar
  17. Martin, D., Briggs, D.E.G., and Parkes, R.J., Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils, J. Geol. Soc. (London), 2004, vol. 161, no. 5, pp. 735–738.CrossRefGoogle Scholar
  18. Martin, D., Briggs, D.E.G., and Parkes, R.J., Decay and mineralization of invertebrate eggs, Palaios, 2005, vol. 20, no. 6, pp. 562–572.CrossRefGoogle Scholar
  19. McCoy, V.E., Young, RT., and Briggs, D.EG., Factors controlling exceptional preservation in concretions, Palaios, 2015a, vol. 30, no. 4, pp. 272–280.CrossRefGoogle Scholar
  20. McCoy, V.E., Young, R.T., and Briggs, D.E.G., Sediment permeability and the preservation of soft-tissues in concretions: an experimental study, Palaios, 2015b, vol. 30, no. 8, pp. 608–612.CrossRefGoogle Scholar
  21. Naimark, E.B., Kalinina, M.A., Shokurov, A.V., Markov, A.V., and Boeva, N.M., Decaying of Artemia salina in clay colloids: 14-month experimental formation of subfossils, J. Paleontol., 2016a, vol. 90, no. 3, pp. 472–484.CrossRefGoogle Scholar
  22. Naimark, E.B., Kalinina, M.A., Shokurov, A.V., Boeva, N.M., Markov, A.V., and Zaytseva, L.G., Decaying in different clays: implications for soft-tissue preservation, Palaeontology, 2016b, vol. 59, no. 4, pp. 583–595.CrossRefGoogle Scholar
  23. Nemecz, E., Clay Minerals, Budapest: Akad. Kiadó, 1981.Google Scholar
  24. Page, A., Gabbott, S.E., Wilby, P.R., and Zalasiewicz, J.A., Ubiquitous Burgess Shale-style “clay templates” in lowgrade metamorphic mudrocks, Geology, 2008, vol. 36, no. 11, pp. 855–858.CrossRefGoogle Scholar
  25. Towe, K.M., Clay mineral diagenesis as a possible source of silica cement in sedimentary rocks, J. Sediment. Petrol., 1962, vol. 32, no. 1, pp. 26–28.Google Scholar
  26. Towe, K.M., Fossil preservation in the Burgess Shale, Lethaia, 1996, vol. 29, no. 1, pp. 107–108.CrossRefGoogle Scholar
  27. Webster, M., Gaines, R.R., and Hughes, N.C., Microstratigraphy, trilobite biostratinomy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 264, nos. 1–2, pp. 100–122.CrossRefGoogle Scholar
  28. Wilson, L.A. and Butterfield, N.J., Sediment effects on the preservation of Burgess Shale-type compression fossils, Palaios, 2014, vol. 29, no. 4, pp. 145–153.CrossRefGoogle Scholar
  29. Wollanke, G. and Zimmerle, W., Petrographic and geochemical aspects of fossil embedding in exceptionally well preserved fossil deposits, Mitt. Geol.-Paläontol. Inst. Univ. Hamburg, 1990, vol. 69, pp. 77–97.Google Scholar
  30. Zangerl, R., On the geologic significance of perfectly preserved fossils, Proc. 1st North Am. Paleontol. Convention, Chicago, 1969, Part 1, Lawrence, Kansas: Allen, 1971, vol. 1, pp. 1207–1222.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. B. Naimark
    • 1
  • N. M. Boeva
    • 2
  • M. A. Kalinina
    • 3
  • L. V. Zaytseva
    • 1
  1. 1.Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology of Ore Deposits Petrography Mineralogy and GeochemistryMoscowRussia
  3. 3.A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia

Personalised recommendations