Determination of the Energy Structure and Spectroscopic Parameters of the Vibrational State (\({{{v}}_{5}}\) = \({{{v}}_{{12}}}\) = 1) of the C2D4 Molecule

Abstract

Using a Bruker IFS 125HR Fourier spectrometer, the vibrational-rotational structure of the \({{\nu }_{5}} + {{\nu }_{{12}}}\) band of the C2D4 molecule has been detected for the first time with a resolution of 0.0025 cm–1. At the initial investigation stage, interpretation of transitions in the spectrum is carried out; at a later stage, results of the interpretation are used as experimental data for solving the inverse spectroscopic problem. The set of 12 spectroscopic parameters of the vibrational state under study is determined for the first time. The root-mean-square deviation amounts to 0.0013 cm–1.

This is a preview of subscription content, log in to check access.

Fig. 1.

REFERENCES

  1. 1

    J. L. Duncan, Mol. Phys. 83, 159 (1994). https://doi.org/10.1080/00268979400101151

    ADS  Article  Google Scholar 

  2. 2

    T. L. Tan, M. G. Gabona, R. T. A. Dominique, P. D. Godfrey, and D. McNaughton, J. Mol. Spectrosc. 303, 42 (2014). https://doi.org/10.1016/j.jms.2014.07.004

    ADS  Article  Google Scholar 

  3. 3

    K. L. Goh, T. L. Tan, P. P. Ong, and H. H. Teo, Mol. Phys. 98, 583 (2000). https://doi.org/10.1080/00268970009483325

    ADS  Article  Google Scholar 

  4. 4

    M. A. L. Gonzalez, L. M. A. Gonzalez, C. V. Boudon, M. Loete, M. Rotger, M. T. Bourgeois, K. Didriche, M. Herman, V. A. Kapitanov, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and T. M. Petrova, J. Quant. Spectrosc. Radiat. Transfer 111, 2265 (2010). https://doi.org/10.1016/j.jqsrt.2010.04.010

    ADS  Article  Google Scholar 

  5. 5

    T. L. Tan, M. Gabona, G. Andy, Wong Dominique, R. T. Appadoo, and Don McNaughton, J. Mol. Spectrosc. 329, 8 (2016). https://doi.org/10.1016/j.jms.2016.08.018

    ADS  Article  Google Scholar 

  6. 6

    D. Viglaska, M. Rey, T. Delahaye, and A. V. Nikitinc, J. Quant. Spectrosc. Radiat. Transfer. 230, 142 (2019).

    ADS  Article  Google Scholar 

  7. 7

    R. Adawiah and T. L. Tan, J. Mol. Spectrosc. 363, 1 (2019). https://doi.org/10.1016/j.jms.2019.111180

    ADS  Article  Google Scholar 

  8. 8

    O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. L. Fomchenko, F. Zhang, C. Sydow, C. Maul, and S. Bauerecker, J. Quant. Spectrosc. Radiat. Transfer 182, 55 (2016). https://doi.org/10.1016/j.jqsrt.2016.04.026

    ADS  Article  Google Scholar 

  9. 9

    R. M. Aminova, Potential Energy Surfaces of Molecular Systems. Quantum Chemical Methods for the Analysis of PES, The Handbook (Kazan. Gos. Univ., Kazan’, 2009) [in Russian].

  10. 10

    A. V. Tulub and K. V. Simon, Opt. Spectrosc. 102, 186 (2007). https://doi.org/10.1134/S0030400X07020051

    ADS  Article  Google Scholar 

  11. 11

    X. Wang, W. E. Turner, J. Agarwal, and H. F. Schaefer, J. Phys. Chem. A 118, 7560 (2014). https://doi.org/10.1021/jp502282v

    Article  Google Scholar 

  12. 12

    G. K. T. Conn and G. H. Twigg, Proc. R. Soc. London, Ser. A 171, 70 (1939). https://doi.org/10.1098/rspa.1939.0054

    ADS  Article  Google Scholar 

  13. 13

    M. V. Vol’kenshtein, L. A. Gribov, M. A. El’yashevich, and B. I. Stepanov, Molecular Vibrations, 2nd ed. (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  14. 14

    O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, T. M. Petrova, A. M. Solodov, and A. A. Solodov, J. Mol. Phys. 108, 637 (2010). https://doi.org/10.1080/00268971003645362

    ADS  Article  Google Scholar 

  15. 15

    M. de Vleeschouwer, Ch. Lambeau, D. van Lerberghe, E. Janssens, and A. Fayt, J. Mol. Spectrosc. 90, 273 (1981). https://doi.org/10.1016/0022-2852(81)90345-3

    ADS  Article  Google Scholar 

  16. 16

    H. H. Nielsen, Rev. Mod. Phys. 23, 90 (1951). https://doi.org/10.1103/RevModPhys.23.90

    ADS  Article  Google Scholar 

  17. 17

    B. J. Howard and R. E. Moss, Mol. Phys. 19, 433 (1970). https://doi.org/10.1080/00268977000101471

    ADS  Article  Google Scholar 

  18. 18

    O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. L. Fomchenko, C. Sydow, and S. Bauerecker, J. Mol. Spectrosc. 319, 50 (2016). https://doi.org/10.1016/j.jms.2015.11.002

    ADS  Article  Google Scholar 

  19. 19

    O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, T. Buttersack, C. Sydow, and S. Bauerecker, J. Quant. Spectrosc. Radiat. Transfer 169, 49 (2016). https://doi.org/10.1016/j.jqsrt.2015.09.015

    ADS  Article  Google Scholar 

  20. 20

    J. K. G. Watson, J. Chem. Phys. 46, 1935 (1967). https://doi.org/10.1063/1.1840957

    ADS  Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project nos. 18-02-00819 A and 18-32-00116 mol_a.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Ziatkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ziatkova, A.G., Merkulova, M.A. & Konova, Y.V. Determination of the Energy Structure and Spectroscopic Parameters of the Vibrational State (\({{{v}}_{5}}\) = \({{{v}}_{{12}}}\) = 1) of the C2D4 Molecule. Opt. Spectrosc. 128, 569–574 (2020). https://doi.org/10.1134/S0030400X20050203

Download citation

Keywords:

  • vibrational–rotational structure
  • deuterated isotopolog of ethylene
  • rotational constants
  • Watson Hamiltonian
  • b-type transitions