Skip to main content
Log in

Study of CsPbBr3 Nanocrystals and Their Agglomerates by Combined Scanning Probe Microscopy and Optical Spectrometry

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The electric, piezoelectric, and optical properties of colloidally synthesized CsPbBr3 nanocrystals (NCs) are studied by combined scanning probe microscopy and optical spectrometry. It is found that the CsPbBr3 NCs have a cubic shape with an edge length of 10 nm. When deposited on a substrate, these NCs gather into faceted agglomerates up to several hundred nanometers in size. It is shown that the photoluminescence spectra contain, in addition to the main narrow edge-luminescence line (2.47 eV), two additional broad defect lines lying 40 and 200 meV lower than the main line. The NC agglomerates have a low surface potential (~20–30 mV) and contain a small amount of charges. It is shown that piezoelectric modulus d33 of CsPbBr3 NC agglomerates does not exceed 1 pm/V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater. 13, 897 (2014). doi 10.1038/NMAT4014

    Article  ADS  Google Scholar 

  2. D. Li, P. Liao, X. Shai, W. Huang, S. Liu, H. Li, Y. Shena, and M. Wang, RSC Adv. 6, 89356 (2016). doi 10.1039/C6RA19801E

  3. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat. Nanotechnol. 9, 687 (2014). doi 10.1038/NNANO.2014.149

    Article  ADS  Google Scholar 

  4. Y. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. Ma, and H. Gao, Adv. Mater. 28, 305 (2016). doi 10.1002/adma.201503954

    Article  Google Scholar 

  5. L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, Nat. Commun. 5, 5404 (2014). doi 10.1038/ncomms6404

    Article  Google Scholar 

  6. L. Su, Z. X. Zhao, H. Y. Li, J. Yuan, Z. L. Wang, G. Z. Cao, and G. Zhu, ACS Nano 9, 11310 (2015). doi 10.1021/acsnano.5b04995

    Article  Google Scholar 

  7. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13, 476 (2014). doi 10.1038/nmat3911

    Article  ADS  Google Scholar 

  8. Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, and S. Jin, ACS Nano 10, 7963 (2016). doi 10.1021/acsnano.6b03916

    Article  Google Scholar 

  9. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Lett. 15, 3692 (2015). doi 10.1021/nl5048779

    Article  ADS  Google Scholar 

  10. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, Nano Lett. 15, 5635 (2015). doi 10.1021/acs.nanolett.5b02404

    Article  ADS  Google Scholar 

  11. X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y. W. Zhang, P. F. Tan, and S. Chen, RSC Adv. 7, 10391 (2017). doi 10.1039/C6RA27665B

  12. L. B. Matyushkin and V. A. Moshnikov, Semiconductors 51, 1337 (2017). doi 10.1134/S106378261710013X

    Article  ADS  Google Scholar 

  13. O. Yu. Posudievsky, N. V. Konoshchuk, V. L. Karbivskyy, O. P. Boiko, V. G. Koshechko, and V. D. Pokhodenko, Theor. Exp. Chem. 53, 235 (2017). doi 10.1007/s11237-017-9520-z

    Article  Google Scholar 

  14. C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, and M. G. Kanatzidis, Cryst. Growth Des. 13, 2722 (2013). doi 10.1021/cg400645t

    Article  Google Scholar 

  15. J. Kang and L. W. Wang, J. Phys. Chem. Lett. 8, 489 (2017). doi 10.1021/acs.jpclett.6b02800

    Article  Google Scholar 

  16. V. K. Ravi, A. Swarnkar, R. Chakraborty, and A. Nag, Nanotechnology 27, 325708 (2016). doi 10.1088/0957-4484/27/32/325708

    Article  Google Scholar 

  17. A. Dey, P. Rathod, and D. Kabra, Adv. Opt. Mater. 6, 1800109 (2018). doi 10.1002/adom.201800109

    Article  Google Scholar 

  18. J. He, M. Guo, and R. Long, J. Phys. Chem. Lett. 9, 3021 (2018). doi 10.1021/acs.jpclett.8b01266

    Article  Google Scholar 

  19. A. V. Ankudinov and A. N. Titkov, Phys. Solid State 47, 1148 (2005). doi 10.1134/1.1946871

    Article  ADS  Google Scholar 

  20. J. Song, Z. Xiao, B. Chen, S. Prockish, X. Chen, A. Rajapitamahuni, L. Zhang, J. Huang, and X. Hong, ACS Appl. Mater. Interfaces 10, 19218 (2018). doi 10.1021/acsami.8b03403

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 17-32-50107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Dement’ev.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dement’ev, P.A., Dunaevskii, M.S., Matyushkin, L.B. et al. Study of CsPbBr3 Nanocrystals and Their Agglomerates by Combined Scanning Probe Microscopy and Optical Spectrometry. Opt. Spectrosc. 125, 858–863 (2018). https://doi.org/10.1134/S0030400X18120044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18120044

Navigation