Skip to main content
Log in

Electronic Absorption Spectra of Neutral and Charged Silver Molecular Clusters

  • Spectroscopy and Physics of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The structural, energy, and optical properties of charged and neutral molecular clusters (MCs) of silver Agn (n = 2–5) have been simulated within the density functional theory (DFT). It has been shown that the electronic absorption spectrum of neutral MCs is shifted toward lower energies compared to the charged ones. The strengths of the oscillators of neutral MCs are mainly larger than the ones of charged MCs. A comparison of the simulation results with the previously obtained experimental ones for glasses with silver MCs has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lu and W. Chen, Chem. Soc. Rev. 41, 3594 (2012). doi 10.1039/c2cs15325d

    Article  Google Scholar 

  2. L. Zhang and E. Wang, Nano Today 9, 132 (2014). doi 10.1016/j.nantod.2014.02.010

    Article  ADS  Google Scholar 

  3. I. Diez and R. H. A. Ras, Nanoscale 3, 1963 (2011). doi 10.1039/c1nr00006c

    Article  ADS  Google Scholar 

  4. L.-Y. Chen, C.-W. Wang, Z. Yuan, and H.-T. Chang, Anal. Chem. 87, 216 (2015). doi 10.1021/ac503636j

    Article  Google Scholar 

  5. A. S. Kuznetsov, V. K. Tikhomirov, M. V. Shestakov, and V. V. Moshchalkov, Nanoscale 5, 10065 (2013). doi 10.1039/c3nr02798h

    Article  ADS  Google Scholar 

  6. J. Ho, K. M. Ervin, and W. C. Lineberger, J. Chem. Phys. 93, 6987 (1990). doi 10.1063/1.459475

    Article  ADS  Google Scholar 

  7. R. Kellerman, J. Chem. Phys. 70, 1562 (1979). doi 10.1063/1.437550

    Article  ADS  Google Scholar 

  8. S. Lecoultre, A. Rydlo, J. Buttet, C. Felix, S. Gilb, and W. Harbich, J. Chem. Phys. 134, 184504 (2011). doi 10.1063/1.3589357

    Article  ADS  Google Scholar 

  9. D. A. Ozin and H. Hubert, Inorg. Chem. 17, 155 (1978). doi 10.1021/ic50188a031

    Article  Google Scholar 

  10. Y. Wang and X. G. Gong, Eur. Phys. J. D 34, 19 (2005). doi 10.1140/epjd/e2005-00103-0

    Article  ADS  Google Scholar 

  11. G. U. Gamboa, A. C. Reber, and S. N. Khanna, New J. Chem. 37, 3928 (2013). doi 10.1039/c3nj01075a

    Article  Google Scholar 

  12. R. Fournier, J. Chem. Phys. 115, 2165 (2001). doi 10.1063/1.1383288

    Article  ADS  Google Scholar 

  13. K. Yabana and G. F. Bertsch, Phys. Rev. A 60, 3809 (1999). doi 10.1103/physreva.60.3809

    Article  ADS  Google Scholar 

  14. G. F. Zhao, Y. Lei, and Z. Zeng, Chem. Phys. 327, 261 (2006). doi 10.1016/j.chemphys.2006.04.014

    Article  Google Scholar 

  15. V. Bonačić-Koutecký, J. Pittner, M. Boiron, and P. Fantucci, J. Chem. Phys. 110, 3876 (1999). doi 10.1007/978-3-642-88188-6_36

    Article  ADS  Google Scholar 

  16. A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, Opt. Spectrosc. 114, 769 (2013). doi 10.1134/s0030400x13030132

    Article  ADS  Google Scholar 

  17. V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, Opt. Mater. 36, 753 (2014). doi 10.1016/j.optmat. 2013.11.018

    Article  ADS  Google Scholar 

  18. ADF2014, Vrije Universiteit, Amsterdam, Netherlands. 2014. https://doi.org/www.scm.com.

    Google Scholar 

  19. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi 10.1103/physrevlett.77.3865

    Article  ADS  Google Scholar 

  20. E. K. U. Gross, J. F. Dobson, and M. Petersilka, Top. Curr. Chem. 181, 81 (1996). doi 10.1007/bfb0016643

    Article  Google Scholar 

  21. F. Rabilloud, J. Phys. Chem. A 117, 4267 (2013). doi 10.1021/jp3124154

    Article  Google Scholar 

  22. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004). doi 10.1016/j.cplett.2004.06.011

    Article  ADS  Google Scholar 

  23. B. Simard, P. A. Hackett, A. M. James, and P. R. R. Langridge-Smith, Chem. Phys. Lett. 186, 415 (1991). doi 10.1016/0009-2614(91)90201-j

    Article  ADS  Google Scholar 

  24. D. W. Boo, Y. Ozaki, L. H. Andersen, and W. C. Lineberger, J. Phys. Chem. A 101, 6688 (1997). doi 10.1021/jp9711353

    Article  Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Stolyarchuk.

Additional information

Original Russian Text © M.V. Stolyarchuk, A.I. Sidorov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 125, No. 3, pp. 291–296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarchuk, M.V., Sidorov, A.I. Electronic Absorption Spectra of Neutral and Charged Silver Molecular Clusters. Opt. Spectrosc. 125, 305–310 (2018). https://doi.org/10.1134/S0030400X18090229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18090229

Navigation