Skip to main content
Log in

Analysis of Characteristics of the Sensing Elements for the Fiber-Based Evanescent Wave Spectroscopy in the Mid-IR

  • Optical Sensors and Transducers
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Characteristics of the sensing element of a fiber sensor for evanescent wave mid-IR spectroscopy have been studied within the electromagnetic theory of fiber waveguides by using the problem of determining the concentration of aqueous acetone solutions as an example. A multimode chalcogenide fiber was used as a sensing element. It has been shown that the selective excitation of the fiber modes may provide the possibility to increase the sensitivity of the fiber sensing element, decrease the minimum detectable concentration of a substance in a solution, and enhance the range of measured solution concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Konukhov, E. A. Romanova, and V. S. Shiryaev, Opt. Spectrosc. 115, 288 (2014). doi 10.7868/S0030403413080126

    Google Scholar 

  2. J. Heo, Monica M. Rodrigues, S. J. Saggese, and G. H. Sigel, J. Appl. Opt. 30, 3944 (1991). doi 10.1364/AO.30.003944

    Article  ADS  Google Scholar 

  3. R. E. Jonas and M. S. Braiman, J. Appl. Spectrosc. 47, 1751 (1993). doi 10.1366/0003702934066118

    Article  ADS  Google Scholar 

  4. J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, J. Appl. Opt. 33, 6315 (1994). doi 10.1364/AO.33.006315

    Article  ADS  Google Scholar 

  5. J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, J. Am. Ceram. Soc. 78, 2198 (1995). doi 10.1111/j.1151-2916.1995.tb08636.x

    Article  Google Scholar 

  6. M. Katz, A. Katzir, I. Schnitzer, and A. Bornstein, J. Appl. Opt. 33, 5888 (1994). doi 10.1364/AO.33.005888

    Article  ADS  Google Scholar 

  7. E. A. Romanova, S. Korsakova, M. Komanec, T. Nemecek, A. Velmuzhov, M. Sukhanov, and V. S. Shiryaev, IEEE J. Sel. Top. Quant. Electron. 23, 1 (2017). doi 10.1109/JSTQE.2016.2630846

    Article  Google Scholar 

  8. S. Korsakova, E. Romanova, A. Velmuzhov, T. Kotereva, M. Sukhanov, and V. Shiryaev, J. Non-Cryst. Solids 475, 3 (2017). doi 10.1016/j.jnoncrysol. 2017.08.027

    Article  Google Scholar 

  9. A. Krug and R. Kellner, J. Mol. Struct. 294, 211 (1993). doi 10.1016/0022-2860(93)80352-V

    Article  ADS  Google Scholar 

  10. V. Artyushenko, F. Schulte, U. Zabarylo, H.-P. Berlien, I. Usenov, T. Saeb Gilani, H. Eichler, L. Pieszczek, A. Bogomolov, H. Krause, and O. Minet, Proc. SPIE 9537, 953720 (2015). doi 10.1364/ECBO.2015.953720

    Article  Google Scholar 

  11. Y. Raichlin and A. Katzir, J. Appl. Spectrosc. 62, 55A (2008). doi 10.1366/000370208783575456

    Google Scholar 

  12. K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adam, K. Staubmann, and T. Baumann, Sens. Actuators B 101, 252 (2004). doi 10.1016/j.snb.2004.03.014

    Article  Google Scholar 

  13. K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, J. Non-Cryst. Solids 326–327, 434 (2003). doi 10.1016/S0022-3093(03)00438-1

    Article  Google Scholar 

  14. B. Bureau, C. Boussard-Plédel, V. Nazabal, J.-L. Adam, and J. Lucas, Adv. Photon. doi 10.1364/SENSORS. 2014.SeTh1C.1

  15. D. le Coq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Plédel, and J. Lucas, Int. J. Inorg. Mater. 3, 233 (2001). doi 10.1016/S1466-6049(01)00007-1

    Article  Google Scholar 

  16. E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Plédel, J.-C. Sangleboeuf, and P. Pierre Lucas, J. Opt. Soc. Am. B 27, 966 (2010). doi 10.1364/JOSAB.27.000966

    Article  ADS  Google Scholar 

  17. P. Lucas, D. L. Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, J. Appl. Spectrosc. 59, 1 (2005). doi 10.1366/0003702052940387

    Article  ADS  Google Scholar 

  18. J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, J. Non-Cryst. Solids 326–327, 430 (2003). doi 10.1016/S0022-3093(03)00434-4

    Google Scholar 

  19. P. Houizot, M.-L. Anne, C. Boussard-Plédel, O. Loreal, H. Tariel, J. Lucas, and B. Bureau, Sensors 14, 17905 (2014). doi 10.3390/s141017905

    Article  Google Scholar 

  20. https://doi.org/www.artphotonics.de.

  21. A. Messica, A. Greenstein, and A. Katzir, J. Appl. Opt. 35, 2274 (1996). doi 10.1364/AO.35.002274

    Article  ADS  Google Scholar 

  22. Y. Xu, A. Cottenden, and N. Barrie Jones, J. Opt. Laser Eng. 44, 93 (2006). doi 10.1016/j.optlaseng.2005.05.003

    Article  Google Scholar 

  23. Amorphous Chalcogenides, Advances and Applications, Ed. by R. Wang (Pan Stanford, Singapore, 2013).

  24. P. S. Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, J. Opt. A 4, 247 (2002). doi 10.1088/1464-4258/4/3/305

    Article  ADS  Google Scholar 

  25. L. S. Thomas, N. A. George, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Lett. 26, 1541 (2001). doi 10.1364/OL.26.001541

    Article  ADS  Google Scholar 

  26. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), p. 190.

    Google Scholar 

  27. J. Bertie, John Bertie’s Download Site. https://doi.org/sites.ualberta.ca/~jbertie/JBDownload.HTM.

  28. A. P. Velmuzhov, V. S. Shiryaev, M. V. Sukhanov, T. V. Kotereva, M. F. Churbanov, N. S. Zernova, and A. D. Plekhovich, Opt. Mater. 75, 525 (2018). doi 10.1016/j.optmat.2017.11.012

    Article  ADS  Google Scholar 

  29. https://doi.org/refractiveindex.info/?shelf=3d&book=liquids&page=water.

  30. G. M. Hale and M. R. Querry, J. Appl. Opt. 12, 555 (1973). doi 10.1364/AO.12.000555

    Article  ADS  Google Scholar 

  31. J. Rheims, J. Köser, and T. Wriedt, Meas. Sci. Technol. 8, 601 (1997). doi 10.1088/0957-0233/8/6/003

    Article  ADS  Google Scholar 

  32. J. A. Savage, P. J. Webber, and A. M. Pitt, Infrared Phys. 20, 313 (1980). doi 10.1016/0020-0891(80)90045-7

    Article  ADS  Google Scholar 

  33. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photon. 8, 830 (2014). doi 10.1038/nphoton.2014.213

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Korsakova.

Additional information

Original Russian Text © S.V. Korsakova, E.A. Romanova, A.P. Velmuzhov, T.V. Kotereva, M.V. Sukhanov, V.S. Shiryaev, 2018, published in Optika i Spektroskopiya, 2018, Vol. 125, No. 3, pp. 402–410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korsakova, S.V., Romanova, E.A., Velmuzhov, A.P. et al. Analysis of Characteristics of the Sensing Elements for the Fiber-Based Evanescent Wave Spectroscopy in the Mid-IR. Opt. Spectrosc. 125, 416–424 (2018). https://doi.org/10.1134/S0030400X18090163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18090163

Navigation