Skip to main content
Log in

Confinement of an Electron in an Image Potential and an External Electrostatic Field

  • Optics of Low-Dimensional Structures, Mesostructures, and Metamaterials
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The quasi-classical approximation is used to determine the positions of the classical turning points upon motion of an electron that is bound by an image field and a constant homogeneous electric field of the same direction. Power expansions of the coordinates of the turning points in a wide range of electron energies and field strengths are obtained. The mechanism of one-dimensional confinement of an electron, which determines a completely discrete spectrum of states, is described. The dependence of the spatial width of the confinement region on the field strength and electron energy is determined. The dependences of the electron energy in different states on the external field strength are calculated numerically. Quasi-classical quantization is performed, and the dependence of the electron energy on the width of the confinement region is determined. The energy interval of a maximum density of electron states is found, which is determined by the dependence of the width of the confinement region on the electric field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nanoscale Science and Technology, Ed. by R. Kelsall, I. W. Hamley, and M. Geoghegan (Wiley, Chichester, 2005).

    Google Scholar 

  2. P. Harrison, Quantum Wells, Wires and Dots (Wiley, Chichester, 2010).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, New York, 1984; Nauka, Moscow, 2002).

    Google Scholar 

  4. P. M. Echenique and M. E. Uranga, Surf. Sci. 247, 125 (1991).

    Article  ADS  Google Scholar 

  5. P. M. Echenique, R. Berndt, E. V. Chulkov, T. Fauster, A. Goldmann, and U. Hofer, Surf. Sci. Rep. 52, 219 (2004).

    Article  ADS  Google Scholar 

  6. S. V. Eremeev, S. S. Tsirkin, and E. V. Chulkov, Phys. Solid State 52, 1768 (2010).

    Article  ADS  Google Scholar 

  7. P. M. Echenique and M. E. Uranga, Surf. Sci. 247, 125 (1991).

    Article  ADS  Google Scholar 

  8. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 391, L1217 (1997).

    Google Scholar 

  9. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 437, 330 (1999).

    Article  ADS  Google Scholar 

  10. Th. Fauster, Ch. Reuß, I. L. Shumay, and M. Weinelt, Chem. Phys. 251, 111 (2000); Th. Fauster and M. Weinelt, J. Electron Spectrosc. Relat. Phenom. 114–116, 269 (2001).

    Article  Google Scholar 

  11. P. M. Echenique and J. B. Pendry, Prog. Surf. Sci. 32, 111 (1990).

    Article  ADS  Google Scholar 

  12. I. L. Shumay, U. Höfer, Ch. Reuß, U. Thomann, W. Wallauer, and Th. Fauster, Phys. Rev. B 58, 13974 (1998).

    Article  ADS  Google Scholar 

  13. W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).

    Article  ADS  Google Scholar 

  14. P. M. Echenique, R. Berndt, E. V. Chulkov, Th. Fauster, A. Goldman, and U. Höfer, Surf. Sci. 52, 219 (2004).

    Article  Google Scholar 

  15. E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchet-Portal, V. M. Silkin, V. P. Zhukiv, and P. M. Echenique, Chem. Rev. 106, 4160 (2006).

    Article  Google Scholar 

  16. P. A. Golovinskii and M. A. Preobrazhenskii, Opt. Spectrosc. 118, 191 (2015).

    Article  ADS  Google Scholar 

  17. P. A. Golovinskii and M. A. Preobrazhenskii, Tech. Phys. Lett. 41, 720 (2015).

    Article  ADS  Google Scholar 

  18. P. A. Golovinskii and M. A. Preobrazhenskii, Opt. Spectrosc. 122, 120 (2017).

    Article  ADS  Google Scholar 

  19. R. Langer, Phys. Rev. 15, 669 (1937).

    Article  ADS  Google Scholar 

  20. B. M. Karnakov and V. P. Krainov, WKB Approximation in Atomic Physics(Springer, Berlin, 2013).

    Book  Google Scholar 

  21. L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1974; Pergamon, New York, 1977), rus. p. 339.

    Google Scholar 

  22. A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  23. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 1046.

    MATH  Google Scholar 

  24. H. Bateman, Higher Transcendental Functions (McGraw-Hill, New York, 1953).

    Google Scholar 

  25. N. Froman and P. O. Froman, Stark Effect in a Hydrogenic Atom or Ion (Imperial College, London, 2008).

    Book  MATH  Google Scholar 

  26. E. S. Manuilovich, V. A. Astapenko, and P. A. Golovinskii, Quantum Electron. 46, 50 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Golovinskii.

Additional information

Original Russian Text © P.A. Golovinskii, M.A. Preobrazhenskii, 2018, published in Optika i Spektroskopiya, 2018, Vol. 125, No. 3, pp. 395–401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovinskii, P.A., Preobrazhenskii, M.A. Confinement of an Electron in an Image Potential and an External Electrostatic Field. Opt. Spectrosc. 125, 409–415 (2018). https://doi.org/10.1134/S0030400X18090102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18090102

Navigation