Skip to main content
Log in

Optical Constants of an Apatite Single Crystal in the IR Range of 6–28 μm

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

On the basis of polarized IR-reflection spectra in the range of 5000–350 cm–1 measured from the natural face of an optically transparent fluorapatite single crystal, components of a complex refractive index (optical constants) for radiation-vector orientations Ec and Ec have been calculated by the Kramers–Kronig method. The fluorapatite single crystal has been chosen from several samples: it contains a minimum amount of impurities and has a high degree of crystallinity in accordance with the criteria of IR spectroscopy and Raman spectroscopy. Tabular data on optical constants for ordinary and extraordinary rays are given for the IR range of 6–28 μm. The obtained absorption spectra are compared with the results of quantum-chemical ab initio calculations within the B3LYP simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and G. W. Roland, Appl. Opt. 11, 999 (1972).

    Article  ADS  Google Scholar 

  2. S. Qi, Y. Huang, T. Tsuboi, W. Huang, and H. J. Seo, Opt. Mater. Express 4, 397 (2014).

    Google Scholar 

  3. N. V. Tkachenko, L. P. Ol’khovik, and A. S. Kamzin, Phys. Solid State 49, 1588 (2007).

    Google Scholar 

  4. P. S. Thakre, S. C. Gedam, S. J. Dhobl, and R. G. Atram, J. Luminesc. 131, 2683 (2011).

    Article  ADS  Google Scholar 

  5. J. M. Hughes and J. Rakova, Phosphates: Geochemical, Geobiological and Material Importance, Ed. by M. J. Kohn, J. Rakovan, and J. M. Hughes, Vol. 48 of Reviews in Mineralogy and Geochemistry (Mineral. Soc. Am., Washington, DC, 2002), p. 1.

  6. B. T. Wopenka and J. D. Pasteris, Mater. Sci. Eng. 25, 131 (2005). doi 10.1016/j.msec.2005.01.008

    Article  Google Scholar 

  7. Jiangling Li, Master Thesis (Univ. of Birmingham, UK, 2009).

    Google Scholar 

  8. I. I. Plyusnina, Infrared Spectra of Minerals (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  9. H. Adler, Am. Mineralogist 49, 1002 (1964).

    Google Scholar 

  10. R. G. Knubovets and L. D. Kislovskii, in Physics of Apatite (Study of Apatite by Spectroscopy Methods), Ed. by V. S. Sobolev (Nauka, Novosibirsk, 1975), p. 63 [in Russian].

  11. M. Veiderma, R. Knubovets, and K. Tönsuaadu, Bull. Geol. Soc. Finland 70, 69 (2007).

    Article  Google Scholar 

  12. Infrared Spectroscopy—Materials Science, Engineering, and Technology, Ed. by Th. Theophanides (InTech, Croatia, 2012).

    Google Scholar 

  13. K. Yamagishi, K. Onuma, T. Suzuki, F. Okada, J. Tagami, M. Otsuki, and P. Senawangse, Nature 433, 819 (2005).

    Article  ADS  Google Scholar 

  14. S. Dorozhkin, Materials 2, 1975 (2009). doi 10.3390/ma2041975

    Article  ADS  Google Scholar 

  15. Xiaofeng Pang, Hongjuan Zeng, Jialie Liu, Shicheng Wei, and Yufeng Zheng, Mater. Sci. Appl. 1, 81 (2010). doi 10.4236/msa.2010.12015

    Google Scholar 

  16. R. Schuetz, D. Fix, U. Schade, E. F. Aziz, N. Timofeeva, R. Weinkamer, and A. Masic, Molecules 20, 5835 (2015). doi 10.3390/molecules20045835

    Article  Google Scholar 

  17. G. Ulian, G. Valgre, M. Corno, and P. Ugliengo, Am. Mineralogist (2017, in press). doi 10.2138/am.2013.4315

    Google Scholar 

  18. G. Ulian, PhD Thesis in Earth Sciences (Univ. Bologna, 2014).

    Google Scholar 

  19. E. Beery, A. J. Fitzgerald, N. N. Zinov’ev, et al., Proc. SPIE 5030, 459 (2003). doi.org/10.1117/12.479993

    Article  ADS  Google Scholar 

  20. B. F. Howell, Jr. and P. E. Licastro, Am. Mineralogist 46, 269 (1961).

    Google Scholar 

  21. L. C. Kravitz, J. D. Kingsley, and E. L. Elkin, J. Chem. Phys. 19, 4600 (1968).

    Article  ADS  Google Scholar 

  22. M. J. Zuerlein, D. Fried, J. D. B. Featherstone, and W. Seka, IEEE J. Sel. Top. Quantum Electron. 5, 1083 (1999).

    Article  Google Scholar 

  23. G. Duplain, R. Boulay, and P. A. Belanger, Appl. Opt. 26, 4447 (1987). doi 10.1364/AO.26.004447

    Article  ADS  Google Scholar 

  24. R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley, USGS Digital Spectral Library splib06a, U. S. Geological Survey, Data Series 231 (2007). https://crustal.usgs.gov/speclab.

    Google Scholar 

  25. M. Ostrooumov, B. Lasnier, and S. Lefrant, Infrared Reflection Spectrometry of Minerals and Gems, Catalogue of the Spectrum Nantes 1993–2009. http://www.mineralog.net/?page_id=10.

    Google Scholar 

  26. F. F. M. de Mul, M. H. J. Hottenhuis, P. Bouter, J. Greve, J. Arends, and J. J. T. Bosch, J. Dent. Res. 65, 437 (1986).

    Article  Google Scholar 

  27. P. N. de Aza, C. Santos, A. Pazo, S. de Aza, R. Cusco, and L. Artus, Chem. Mater. 9, 912 (1997).

    Article  Google Scholar 

  28. RRUFF Database Raman, X-ray, Infrared, and Chemistry Files. http://www.rruff.info.

  29. L. I. Al’perovich, Method of Dispersion Relations and Its Application for Determination of Optical Characteristics (Irfon, Dushanbe, 1973) [in Russian].

    Google Scholar 

  30. R. Kitamura, L. Pilon, and M. Jonasz, Appl. Opt. 46, 8118 (2007).

    Article  ADS  Google Scholar 

  31. D. Y. Smith, Dispersion Theory, Sum Rules, and Their Application to the Analysis of Optical Data, Vol. 1 of Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, San Diego, 1985), p. 35.

  32. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  33. V. M. Zolotarev, Opt. Spectrosc. 122, 749 (2017).

    Article  ADS  Google Scholar 

  34. R. W. Pohl, Optik und Atomphysik (Springer, Berlin, Heidelberg, 1954) [in German].

    Book  Google Scholar 

  35. D. J. Dahm and K. D. Dahm, Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials (NIR Publ., Chichester, UK, 2007).

    Google Scholar 

  36. I. Rehman and W. Bonfield, J. Mater. Sci.—Mater. Med., no. 8 (1), 1 (1997).

    Article  Google Scholar 

  37. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998; Mir, Moscow, 1986).

    Google Scholar 

  38. V. M. Zolotarev, Opt. Spectrosc. 123, 717 (2017).

    Article  ADS  Google Scholar 

  39. F. Freund and R. M. Knobel, J. Chem. Soc., Dalton Trans. 11, 1136 (1977).

    Article  Google Scholar 

  40. C. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, New York, 1994).

    Google Scholar 

  41. M. Corno, C. Busco, B. Civalleri, and P. Ugliengo, Phys. Chem. Chem. Phys. 8, 2464 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Zolotarev.

Additional information

Original Russian Text © V.M. Zolotarev, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 2, pp. 264–274.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotarev, V.M. Optical Constants of an Apatite Single Crystal in the IR Range of 6–28 μm. Opt. Spectrosc. 124, 262–272 (2018). https://doi.org/10.1134/S0030400X18020236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18020236

Navigation