Optics and Spectroscopy

, Volume 124, Issue 2, pp 262–272 | Cite as

Optical Constants of an Apatite Single Crystal in the IR Range of 6–28 μm

Physical Optics
  • 2 Downloads

Abstract

On the basis of polarized IR-reflection spectra in the range of 5000–350 cm–1 measured from the natural face of an optically transparent fluorapatite single crystal, components of a complex refractive index (optical constants) for radiation-vector orientations Ec and Ec have been calculated by the Kramers–Kronig method. The fluorapatite single crystal has been chosen from several samples: it contains a minimum amount of impurities and has a high degree of crystallinity in accordance with the criteria of IR spectroscopy and Raman spectroscopy. Tabular data on optical constants for ordinary and extraordinary rays are given for the IR range of 6–28 μm. The obtained absorption spectra are compared with the results of quantum-chemical ab initio calculations within the B3LYP simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and G. W. Roland, Appl. Opt. 11, 999 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    S. Qi, Y. Huang, T. Tsuboi, W. Huang, and H. J. Seo, Opt. Mater. Express 4, 397 (2014).Google Scholar
  3. 3.
    N. V. Tkachenko, L. P. Ol’khovik, and A. S. Kamzin, Phys. Solid State 49, 1588 (2007).Google Scholar
  4. 4.
    P. S. Thakre, S. C. Gedam, S. J. Dhobl, and R. G. Atram, J. Luminesc. 131, 2683 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    J. M. Hughes and J. Rakova, Phosphates: Geochemical, Geobiological and Material Importance, Ed. by M. J. Kohn, J. Rakovan, and J. M. Hughes, Vol. 48 of Reviews in Mineralogy and Geochemistry (Mineral. Soc. Am., Washington, DC, 2002), p. 1.Google Scholar
  6. 6.
    B. T. Wopenka and J. D. Pasteris, Mater. Sci. Eng. 25, 131 (2005). doi 10.1016/j.msec.2005.01.008CrossRefGoogle Scholar
  7. 7.
    Jiangling Li, Master Thesis (Univ. of Birmingham, UK, 2009).Google Scholar
  8. 8.
    I. I. Plyusnina, Infrared Spectra of Minerals (Mosk. Gos. Univ., Moscow, 1976) [in Russian].Google Scholar
  9. 9.
    H. Adler, Am. Mineralogist 49, 1002 (1964).Google Scholar
  10. 10.
    R. G. Knubovets and L. D. Kislovskii, in Physics of Apatite (Study of Apatite by Spectroscopy Methods), Ed. by V. S. Sobolev (Nauka, Novosibirsk, 1975), p. 63 [in Russian].Google Scholar
  11. 11.
    M. Veiderma, R. Knubovets, and K. Tönsuaadu, Bull. Geol. Soc. Finland 70, 69 (2007).CrossRefGoogle Scholar
  12. 12.
    Infrared Spectroscopy—Materials Science, Engineering, and Technology, Ed. by Th. Theophanides (InTech, Croatia, 2012).Google Scholar
  13. 13.
    K. Yamagishi, K. Onuma, T. Suzuki, F. Okada, J. Tagami, M. Otsuki, and P. Senawangse, Nature 433, 819 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    S. Dorozhkin, Materials 2, 1975 (2009). doi 10.3390/ma2041975ADSCrossRefGoogle Scholar
  15. 15.
    Xiaofeng Pang, Hongjuan Zeng, Jialie Liu, Shicheng Wei, and Yufeng Zheng, Mater. Sci. Appl. 1, 81 (2010). doi 10.4236/msa.2010.12015Google Scholar
  16. 16.
    R. Schuetz, D. Fix, U. Schade, E. F. Aziz, N. Timofeeva, R. Weinkamer, and A. Masic, Molecules 20, 5835 (2015). doi 10.3390/molecules20045835CrossRefGoogle Scholar
  17. 17.
    G. Ulian, G. Valgre, M. Corno, and P. Ugliengo, Am. Mineralogist (2017, in press). doi 10.2138/am.2013.4315Google Scholar
  18. 18.
    G. Ulian, PhD Thesis in Earth Sciences (Univ. Bologna, 2014).Google Scholar
  19. 19.
    E. Beery, A. J. Fitzgerald, N. N. Zinov’ev, et al., Proc. SPIE 5030, 459 (2003). doi.org/10.1117/12.479993ADSCrossRefGoogle Scholar
  20. 20.
    B. F. Howell, Jr. and P. E. Licastro, Am. Mineralogist 46, 269 (1961).Google Scholar
  21. 21.
    L. C. Kravitz, J. D. Kingsley, and E. L. Elkin, J. Chem. Phys. 19, 4600 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    M. J. Zuerlein, D. Fried, J. D. B. Featherstone, and W. Seka, IEEE J. Sel. Top. Quantum Electron. 5, 1083 (1999).CrossRefGoogle Scholar
  23. 23.
    G. Duplain, R. Boulay, and P. A. Belanger, Appl. Opt. 26, 4447 (1987). doi 10.1364/AO.26.004447ADSCrossRefGoogle Scholar
  24. 24.
    R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley, USGS Digital Spectral Library splib06a, U. S. Geological Survey, Data Series 231 (2007). https://crustal.usgs.gov/speclab.Google Scholar
  25. 25.
    M. Ostrooumov, B. Lasnier, and S. Lefrant, Infrared Reflection Spectrometry of Minerals and Gems, Catalogue of the Spectrum Nantes 1993–2009. http://www.mineralog.net/?page_id=10.Google Scholar
  26. 26.
    F. F. M. de Mul, M. H. J. Hottenhuis, P. Bouter, J. Greve, J. Arends, and J. J. T. Bosch, J. Dent. Res. 65, 437 (1986).CrossRefGoogle Scholar
  27. 27.
    P. N. de Aza, C. Santos, A. Pazo, S. de Aza, R. Cusco, and L. Artus, Chem. Mater. 9, 912 (1997).CrossRefGoogle Scholar
  28. 28.
    RRUFF Database Raman, X-ray, Infrared, and Chemistry Files. http://www.rruff.info.Google Scholar
  29. 29.
    L. I. Al’perovich, Method of Dispersion Relations and Its Application for Determination of Optical Characteristics (Irfon, Dushanbe, 1973) [in Russian].Google Scholar
  30. 30.
    R. Kitamura, L. Pilon, and M. Jonasz, Appl. Opt. 46, 8118 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    D. Y. Smith, Dispersion Theory, Sum Rules, and Their Application to the Analysis of Optical Data, Vol. 1 of Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, San Diego, 1985), p. 35.Google Scholar
  32. 32.
    V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  33. 33.
    V. M. Zolotarev, Opt. Spectrosc. 122, 749 (2017).ADSCrossRefGoogle Scholar
  34. 34.
    R. W. Pohl, Optik und Atomphysik (Springer, Berlin, Heidelberg, 1954) [in German].CrossRefGoogle Scholar
  35. 35.
    D. J. Dahm and K. D. Dahm, Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials (NIR Publ., Chichester, UK, 2007).Google Scholar
  36. 36.
    I. Rehman and W. Bonfield, J. Mater. Sci.—Mater. Med., no. 8 (1), 1 (1997).CrossRefGoogle Scholar
  37. 37.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998; Mir, Moscow, 1986).Google Scholar
  38. 38.
    V. M. Zolotarev, Opt. Spectrosc. 123, 717 (2017).ADSCrossRefGoogle Scholar
  39. 39.
    F. Freund and R. M. Knobel, J. Chem. Soc., Dalton Trans. 11, 1136 (1977).CrossRefGoogle Scholar
  40. 40.
    C. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, New York, 1994).Google Scholar
  41. 41.
    M. Corno, C. Busco, B. Civalleri, and P. Ugliengo, Phys. Chem. Chem. Phys. 8, 2464 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations