Skip to main content
Log in

The Structure of Radiative Tunnel Recombination Sites in Emulsion Microcrystals of AgBr(I)

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

To identify the structure of emissive tunnel recombination sites in the emulsion microcrystals of silver bromide AgBr(I) with iodine contaminations and to determine the role of an emulsion medium in their formation, the temperature dependence of the luminescence spectra in the range from 77 to 120 K, the kinetics of the growth of the maximum luminescence intensity value at λ ≈ 560 nm, and the luminescence flash spectrum stimulated by the infrared light are investigated. Two types of the AgBr1 – x(I x ) (x = 0.03) microcrystals—namely, obtained in an aqueous solution and on a gelatin substrate—are used in the studies. It is established that the emissive tunnel recombination sites with a luminescence maximum at λ ≈ 560 nm in AgBr1 – x(I x ) (x = 0.03) are the {(I -a I -a )Ag +i } donor–acceptor complexes with the I -a iodine ions located in neighbor anionic sites of the AgBr(I) crystal lattice, next to which the Ag +i interstitial silver ion is positioned. With an increase in the temperature, the {(I -a I -a )Ag +i } sites undergo structural transformation into the {(I -a I -a )Agin+} sites, where n = 2, 3, …. Moreover, the {(I -a I -a )Ag +in } sites (n = 2) after the capture of an electron and hole also provide the tunnel recombination with a luminescence maximum at λ ≈ 720 nm. The influence of an emulsion medium consists in that gelatin interacts with the surface electron-localization sites, i.e., the interstitial silver ions Ag +in , n = 1, 2, and forms the complexes {Ag 0in G+} (n = 1, 2) with them. The latter are deeper electron traps with a small capture cross section as compared to the Ag +in sites (n = 1, 2) and that manifest themselves in that the kinetics of the luminescence growth in AgBr(I) to a stationary level at λ ≈ 560 nm is characterized by the presence of “flash firing.” At the same time, the luminescence flash stimulated by IR light, for which the Ag +in (n = 1, 2) electron-localization sites are responsible, is absent. It is supposed that the electrons localized on the {Ag +in G+} complexes (n = 2) retain the capability for emissive tunnel recombination with holes localized on paired iodine sites with a luminescence maximum at λ ≈ 750 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Belous, S. I. Golub, and N. A. Orlovskaya, Zh. Nauch. Prikl. Fotogr. Kinematogr. 14, 39 (1969).

    Google Scholar 

  2. V. M. Belous, L. P. Mel’nichuk, N. A. Orlovskaya, and K. V. Chibisov, Dokl. Akad. Nauk SSSR 193, 1086 (1970).

    Google Scholar 

  3. C. Mees and T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1977).

    Google Scholar 

  4. V. M. Belous, V. I. Tolstobrov, V. P. Churashov, and V. V. Suvorin, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 22, 390 (1977).

    Google Scholar 

  5. E. A. Zimkin and R. F. Klyuchevich, Usp. Nauch. Fotogr. 16, 136 (1972).

    Google Scholar 

  6. E. A. Zimkin and R. F. Klyuchevich, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 10, 397 (1965).

    Google Scholar 

  7. A. N. D’yakonov and P. M. Zavlin, Polymers in Motion Picture and Photographic Materials (Khimiya, Leningrad, 1991) [in Russian].

    Google Scholar 

  8. V. M. Belous, S. A. Zhukov, and N. A. Orlovskaya, Zh. Nauch. Prikl. Fotogr. Kinematogr. 27, 218 (1982).

    Google Scholar 

  9. S. A. Zhukov, Extended Abstract of Cand. Sci. Dissertation (Odessa, 1991).

    Google Scholar 

  10. S. Sakuragi and H. Kanzaki, Phys. Rev. Lett. 38, 1302 (1977).

    Article  ADS  Google Scholar 

  11. N. V. Denisova, V. M. Belous, I. G. Denisov, and R. G. Deminov, Zh. Nauch. Prikl. Fotogr. Kinematogr. 34, 221 (1989).

    Google Scholar 

  12. N. V. Denisova, Extended Abstract of Cand. Sci. Dissertation (Kazan, 1989).

    Google Scholar 

  13. V. M. Belous, A. Yu. Akhmerov, S. A. Zhukov, and N. A. Orlovskaya, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 46 (2), 19 (2001).

    Google Scholar 

  14. V. A. Lyando, A. O. Vedernikova, I. S. Loginova, L. I. Efimova, A. N. Musina, and G. G. Zagirova, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 27, 364 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zhukov.

Additional information

Original Russian Text © A.V. Tyurin, S.A. Zhukov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 2, pp. 178–183.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyurin, A.V., Zhukov, S.A. The Structure of Radiative Tunnel Recombination Sites in Emulsion Microcrystals of AgBr(I). Opt. Spectrosc. 124, 174–179 (2018). https://doi.org/10.1134/S0030400X18020182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18020182

Navigation