Optics and Spectroscopy

, Volume 124, Issue 2, pp 198–201 | Cite as

The Influence of the Spatial Orientation of ZnO Nanorods on the Luminescence Spectrum

  • S. S. Kurbanov
  • Sh. Z. Urolov
  • Z. Sh. Shaymardanov
Condensed-Matter Spectroscopy


Zinc oxide (ZnO) nanorods were grown on glass substrates coated with a conducting indium tin oxide film using the hydrothermal method. The nanorods are 2–2.5 μm long and 70–200 nm in diameter. Under UV irradiation the nanorods exhibit photoluminescence with a maximum at 382 nm. It is found that changes in angle between the nanorods growth direction and the emission recording direction give rise to an appearance of a violet emission band centered at ∼400 nm. It is possible dependence of the luminescence spectrum on the ZnO nanorods’ spatial orientation is due to localization of the violet emission centers in the surface layer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    G. C. Yi, C. Wang, and W. I. Park, Semicond. Sci. Technol. 25, 22 (2005).CrossRefGoogle Scholar
  3. 3.
    M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    S. S. Kurbanov, H. D. Cho, and T. W. Kang, Opt. Commun. 284, 240 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    S. H. Jeong, B. S. Kim, and B. S. Lee, Appl. Phys. Lett. 82, 2625 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    G. Hua, Y. Zhang, Ch. Ye, M. Wang, and L. Zhang, Nanotechnology 18, 145605 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    S. S. Kurbanov, G. N. Panin, T. W. Kim, and T. W. Kang, J. Lumin. 129, 1099 (2009).CrossRefGoogle Scholar
  9. 9.
    B. Kumar, B. Gonga, S. Vicknesh, S. J. Chua, and S. Tripathy, Appl. Phys. Lett. 89, 141901 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys. 79, 7983 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, Phys. Status Solidi B 226, R4 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    L. Wu, Y. Wu, X. Pan, and F. Kong, Opt. Mater. 28, 418 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, and R. G. Copeland, Appl. Phys. Lett. 88, 252103 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, Appl. Phys. Lett. 88, 103107 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    A. F. Kohan, G. Ceder, D. Morgan, and C. G. van de Walle, Phys. Rev. B 61, 15019 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    A. Zubiaga, F. Tuomisto, F. Plazaola, K. Saarinen, J. A. Garcia, J. F. Rommeluere, J. Zuñiga-Pérez, and V. Muñoz-Sanjosé, Appl. Phys. Lett. 86, 042103 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. S. Kurbanov
    • 1
  • Sh. Z. Urolov
    • 1
  • Z. Sh. Shaymardanov
    • 1
  1. 1.Institute of Ion-Plasma and Laser TechnologiesAcademy of Sciences of UzbekistanTashkentUzbekistan

Personalised recommendations