Skip to main content
Log in

Transmission Spectra and Optical Properties of a Mesoporous Photonic Crystal Based on Anodic Aluminum Oxide

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Optical properties of a one-dimensional photonic-crystal film with a lattice period of ≈380 nm formed by electrochemical etching of an aluminum foil are investigated. Experimental data on the spectra of transmission and reflection in the region of the first, second, and third stop bands of anodic photonic crystal of aluminum oxide are compared with a theoretical dependence obtained from the well-known dispersion relation. The possibility of creating selective narrow-band optical filters based on mesoporous one-dimensional photonic crystals is analyzed. The conditions of enhancement of an electromagnetic field of laser radiation at 532 nm under normal incidence on a photonic-crystal surface are established. The possibility of generation of optical harmonics under the conditions of sharp increase in the effective field of the driving radiation in a mesoporous photonic crystal of anodic aluminum oxide filled with lithium iodate is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. A. Iofis, Photographic and Cinematographic Technology (Sov. Entsiklopediya, Moscow, 1981) [in Russian].

    Google Scholar 

  2. Ch. Weston, Mastering Filters for Photography (Rotovision, Brighton, UK, 2009; Art-rodnik, Moscow, 2010).

    Google Scholar 

  3. P. Carr, N4Pc: How to Build the “Synthetic” Crystal Filter (1990), Ex. 215, p. 18.

    Google Scholar 

  4. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (Nauka, Moscow, 1977; Consultans Bureau, New York, London, 1980).

    Book  Google Scholar 

  5. I. M. Podgornyi, Radiolyubitel’, No. 2, 29 (1996).

    Google Scholar 

  6. S. I. Popov, Radio-Dizain, No. 1, 6 (1993).

    Google Scholar 

  7. V. P. Bykov, Sov. Phys. JETP 35, 269 (1972).

    ADS  Google Scholar 

  8. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  9. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  10. V. S. Gorelik, Quantum Electron. 37, 409 (2007).

    Article  ADS  Google Scholar 

  11. Yisen Liu, Yi Chang, Zhiyuan Ling, Xing Hu, and Yi Li, Electrochem. Commun. 13, 1336 (2011).

    Article  Google Scholar 

  12. S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, J. Appl. Phys. 112, 013106 (2012).

    Article  ADS  Google Scholar 

  13. E. L. Ivchenko and A. N. Poddubnyi, Phys. Solid State 48, 581 (2006).

    Article  ADS  Google Scholar 

  14. V. S. Gorelik and V. V. Filatov, Bull. Lebedev Phys. Inst. 37, 56 (2010).

    Article  ADS  Google Scholar 

  15. V. S. Gorelik and V. V. Filatov, Inorg. Mater. 48, 361 (2012).

    Article  Google Scholar 

  16. V. S. Gorelik, L. S. Lepnev, and A. O. Litvinova, Neorgan. Mater. 50, 1086 (2014).

    Google Scholar 

  17. L. Pavesi, Riv. Nuovo Cimento Soc. Ital. Fis. 20, 1 (1997).

    Google Scholar 

  18. B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, Nanotechnol. 18, 365601 (2007).

    Article  Google Scholar 

  19. Y. Su, G. T. Fei, Y. Zhang, P. Yan, H. Li, G. L. Shang, and L. D. Zhang, Mater. Lett. 65, 2693 (2011).

    Article  Google Scholar 

  20. A. Yariv and P. Yeh, Optical Waves in Crystals. Propagation and Control of Laser Radiation (Wiley, New York, 1984).

    Google Scholar 

  21. V. P. Bykov, Sov. Phys. JETP 35, 269 (1972).

    ADS  Google Scholar 

  22. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awaz, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, et al., New J. Phys. 8, 208 (2006).

    Article  ADS  Google Scholar 

  23. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430 (7000), 654 (2004).

    Article  ADS  Google Scholar 

  24. C. H. R. Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, Phys. Rev. B 61, 5920 (2000).

    Article  ADS  Google Scholar 

  25. C.-J. Wu, M.-S. Chen, and T. J. Yang, Phys. C (Amsterdam, Neth.) 432, 133 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Original Russian Text © V.S. Gorelik, M.M. Yashin, Dungxue Bi, Guang Tao Fei, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 2, pp. 171–177.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelik, V.S., Yashin, M.M., Bi, D. et al. Transmission Spectra and Optical Properties of a Mesoporous Photonic Crystal Based on Anodic Aluminum Oxide. Opt. Spectrosc. 124, 167–173 (2018). https://doi.org/10.1134/S0030400X18020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18020078

Navigation