Skip to main content
Log in

Photoluminescence Properties of Nanoporous Nanocrystalline Carbonate-Substituted Hydroxyapatite

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Luminescence characteristics of an analogue of the mineral component of dental enamel—nanocrystalline B-type carbonate-substituted calcium hydroxyapatite (CHAP)—with defects (nanopores ∼2‒5 nm in size) on the surface of nanocrystals are studied. It is shown that laser-induced luminescence of CHAP samples synthesized by us occurs in the region of ∼515 nm (∼2.4 eV) and is related to the existence of CO3 groups substituting PO4 groups in the CHAP lattice. It is determined that the luminescence intensity of the CHAP samples depends on the amount of structurally bound CO3 groups and decreases with decreasing concentration of these intracenter defects in the apatite structure. The results obtained in this work are of potential importance for developing the fundamentals of precision and early detection of caries in human hard dental tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Fleet, Carbonated Hydroxyapatite: Materials, Synthesis, and Applications (CRC, Boca Raton, FL, 2014).

    Google Scholar 

  2. S. J. Jang, S. E. Kim, T. S. Han, J. S. Son, S. S. Kang, and S. H. Choi, In Vivo 31, 335 (2017).

    Article  Google Scholar 

  3. P. Seredin, D. Goloshchapov, T. Prutskij, and Y. Ippolitov, PLoS One 10 (4), 1 (2015). doi 10.1371/journal. pone.0124008

    Article  Google Scholar 

  4. I. A. Pretty and R. P. Ellwood, J. Dent. 41 (Suppl. 2), S12 (2013). doi 10.1016/j.jdent.2010.04.003

    Article  Google Scholar 

  5. R. M. Rocha-Cabral, F. M. Mendes, E. P. Maldonado, and D. M. Zezell, Proc. SPIE 9531, 95311A–1 (2015). doi 10.1117/12.2180777

    Article  ADS  Google Scholar 

  6. T. Leventouri, A. Antonakos, A. Kyriacou, R. Venturelli, E. Liarokapis, and V. Perdikatsis, Int. J. Biomater. 2009, 1 (2009). doi 10.1155/2009/698547

    Article  Google Scholar 

  7. G. Piga, D. Goncalves, T. J. U. Thompson, A. Brunetti, A. Malgosa, and S. Enzo, Int. J. Spectrosc. 2016, 1 (2016). doi 10.1155/2016/4810149

    Article  Google Scholar 

  8. H. Pan and B. W. Darvell, Cryst. Growth Des. 10, 845 (2010). doi 10.1021/cg901199h

    Article  Google Scholar 

  9. P. V. Seredin, D. L. Goloshchapov, T. Prutskij, and Y. A. Ippolitov, Results Phys. 7, 1086 (2017). doi 10.1016/j.rinp.2017.02.025

    Article  ADS  Google Scholar 

  10. P. V. Seredin, D. L. Goloshchapov, V. M. Kashkarov, Y. A. Ippolitov, and T. Prutskij, Results Phys. 6, 447 (2016). doi 10.1016/j.rinp.2016.08.003

    Article  ADS  Google Scholar 

  11. C. Combes, S. Cazalbou, and C. Rey, Minerals 6 (2), 34 (2016). doi 10.3390/min6020034

    Article  Google Scholar 

  12. E. Ghadimi, H. Eimar, B. Marelli, S. N. Nazhat, M. Asgharian, H. Vali, and F. Tamimi, Springer Plus. 2, 499 (2013). doi 10.1186/2193-1801-2-499

    Article  Google Scholar 

  13. G. A. Waychunas, Rev. Mineral. Geochem. 48, 701 (2002). doi 10.2138/rmg.2002.48.19

    Article  Google Scholar 

  14. L. Bachmann, D. M. Zezell, Ribeiro A. C. da, L. Gomes, and A. S. Ito, Appl. Spectrosc. Rev. 41, 575 (2006). doi 10.1080/05704920600929498

    Article  ADS  Google Scholar 

  15. I. Ioniţă, J. Optoelectron. Adv. Mater. 3, 1122 (2009).

    Google Scholar 

  16. Q. G. Chen, H. H. Zhu, Y. Xu, B. Lin, and H. Chen, Laser Phys. 25, 085601 (2015). doi 10.1088/1054- 660X/25/8/085601

    Article  ADS  Google Scholar 

  17. L. Karlsson, Int. J. Dent. 2010, 1 (2010). doi 10.1155/2010/270729

    Article  Google Scholar 

  18. H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, J. Biophotonics, p. 1 (2012). doi 10.1002/jbio.201200095

    Google Scholar 

  19. I. Panayotov, E. Terrer, H. Salehi, H. Tassery, J. Yachouh, F. J. G. Cuisinier, and B. Levallois, Clin. Oral Invest. 17, 757 (2012). doi 10.1007/s00784-012- 0770-9

    Article  Google Scholar 

  20. N. Subhash, S. S. Thomas, R. J. Mallia, and M. Jose, Lasers Surg. Med. 37, 320 (2005). doi 10.1002/lsm.20229

    Article  Google Scholar 

  21. I. Sarycheva, O. Yanushevich, D. Minakov, and V. Shulgin, J. Stomatol. 68, 424 (2015). doi 10.5604/00114553.1177528

    Google Scholar 

  22. D. L. Goloshchapov, V. M. Kashkarov, N. A. Rumyantseva, P. V. Seredin, A. S. Lenshin, B. L. Agapov, and E. P. Domashevskaya, Ceram. Int. 39, 4539 (2013). doi 10.1016/j.ceramint.2012.11.050

    Article  Google Scholar 

  23. V. S. Komlev, I. V. Fadeeva, A. N. Gurin, E. S. Kovaleva, V. V. Smirnov, N. A. Gurin, and S. M. Barinov, Inorg. Mater. 45, 329 (2009). doi 10.1134/S0020168509030194

    Article  Google Scholar 

  24. Y. Yusufoglu and M. Akinc, J. Am. Ceram. Soc. 91, 77 (2008). doi 10.1111/j.1551-2916.2007.02092.x

    Article  Google Scholar 

  25. J. Liu, Q. Wu, and Y. Ding, Eur. J. Inorg. Chem. 2005, 4145 (2005). doi 10.1002/ejic.200500207

    Article  Google Scholar 

  26. C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, and J. Lin, Cryst. Growth Des. 9, 2725 (2009). doi 10.1021/cg801353n

    Article  Google Scholar 

  27. E. Feldbach, M. Kirm, H. Kotlov, and H. Mägi, DESY Photon Science Annual Report. http://photon-science.desy.de/annual_report/files/2010/20101246.pdf. Accessed Dec. 28, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Goloshchapov.

Additional information

Original Russian Text © D.L. Goloshchapov, P.V. Seredin, D.A. Minakov, E.P. Domashevskaya, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 2, pp. 191–196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goloshchapov, D.L., Seredin, P.V., Minakov, D.A. et al. Photoluminescence Properties of Nanoporous Nanocrystalline Carbonate-Substituted Hydroxyapatite. Opt. Spectrosc. 124, 187–192 (2018). https://doi.org/10.1134/S0030400X18020066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18020066

Navigation