Skip to main content
Log in

In silico Search for Tubulin Polymerization Inhibitors

  • Structural Functional Analysis Of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Cytostatic colchicine is widely used in the treatment of Familial Mediterranean fever, but it has several side effects. For finding new, more effective drugs with higher affinity and diminishside effects we carried out virtual screening of potential inhibitors of the main target of colchicine, the polymerization of tubulin by evaluating affinity 25745 compounds, structurally related to the colchicine. We have identified 11 commercially available compounds with higher affinity to tubulin. Compounds with highest binding scores include trimethoxybenzene and its derivatives; these compounds bind to the same site in similar orientation. Information provided can form the basis for design of new cytostatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBS:

Colchicine Binding Site

CID:

Compound Identifier

FMF:

Familial Mediterranean Fever

ICM:

Internal Coordinates Mechanics

MAPs:

Microtubule-Associated Proteins

SAR:

Structure-Activity Relationships

References

  1. Coakley W.T. 1987. Hyperthermia effects on the cytoskeleton and on cell morphology. Symp. Soc. Exp. Biol. 41, 187–211.

    PubMed  CAS  Google Scholar 

  2. Menéndez M., Rivas G., Díaz J.F., Andreu J.M. 1998. Control of the structural stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site. J. Biol. Chem. 273 (1), 167–176.

    Article  PubMed  Google Scholar 

  3. Zhang R., Alushin G.M., Brown A., Nogales E. 2015. Mechanistic origin of microtubule dynamic instability and its modulation by EBproteins. Cell. 162 (4), 849–859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Weisenberg R.C., Broisy G.G., Taylor E.W. 1968. Colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 7 (12), 4466–4479.

    Article  PubMed  CAS  Google Scholar 

  5. Panda D., Daijo J.E., Jordan M.A., Wilson L. 1995. Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. Biochemistry. 34 (31), 9921–9929.

    Article  PubMed  CAS  Google Scholar 

  6. Prota A.E., Bargsten K., Zurwerra D., Field J.J., Díaz J.F., Altmann K.H., Steinmetz M.O. 2013. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science. 339 (6119), 587–590.

    Article  PubMed  CAS  Google Scholar 

  7. Jordan M.A., Wilson L. 2004. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer. 4 (4), 253–265.

    Article  PubMed  CAS  Google Scholar 

  8. Lu Y., Chen J., Xiao M., Li W., Miller D.D. 2012. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 29 (11), 2943–2971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ravelli R.B., Gigant B., Curmi P.A., Jourdain I., Lachkar S., Sobel A., Knossow M. 2004. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 428 (6979), 198–202.

    Article  PubMed  CAS  Google Scholar 

  10. Liu W., Sun P., Yang L., Wang J., Li L., Wang J. 2010. Assay of glioma cell responses to an anticancer drug in a cell-based microfluidic device. Microfluidics Nanofluidics. 9 (4–5), 717–725.

    Article  CAS  Google Scholar 

  11. Cho J.H., Joo Y.H., Shin E.Y., Park E.J., Kim M.S. 2017. Anticancer effects of colchicine on hypopharyngeal cancer. Anticancer Res. 37 (11), 6269–6280.

    PubMed  Google Scholar 

  12. Lidar M., Livneh A. 2007. Familial Mediterranean fever: Clinical, molecular and management advancements. Neth. J. Med. 65 (9), 318–324.

    PubMed  CAS  Google Scholar 

  13. Emmerson B.T. 1996. The management of gout. New Engl. J. Med. 334 (7), 445–451.

    Article  PubMed  CAS  Google Scholar 

  14. Deursen R.V., Blum L.C., Reymond J.L. 2010. A searchable map of PubChem. J. Chem. Inform. Modeling. 50 (11), 1924–1934.

    Article  CAS  Google Scholar 

  15. Prota A.E., Danel F., Bachmann F., Bargsten K., Buey R.M., Pohlmann J., Reinelt S., Lane H., Steinmetz M.O. 2014. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J. Mol. Biol. 426 (8), 1848–1860.

    Article  PubMed  CAS  Google Scholar 

  16. Marangon J., Christodoulou M.S., Casagrande F.V., Tiana G., Dalla Via L., Aliverti A., Passarella D., Cappelletti G., Ricagno S. 2016. Tools for the rational design of bivalent microtubule-targeting drugs. Biochem. Biophys. Res. Commun. 479 (1), 48–53.

    Article  PubMed  CAS  Google Scholar 

  17. Gaspari R., Prota A. E., Bargsten K., Cavalli A., Steinmetz M.O. 2017. Structural basis of cis-and trans-combretastatin binding to tubulin. Chem. 2 (1), 102–113.

    Article  CAS  Google Scholar 

  18. Bottegoni G., Kufareva I., Totrov M., Abagyan R. 2009. Four-dimensional docking: A fast and accurate account of discrete receptor flexibility in ligand docking. J. Med. Chem. 52 (2), 397–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Totrov M. 2011. Ligand binding site superposition and comparison based on atomic property fields: Identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites. BMC Bioinformatics. 12 (1), 35.

    Article  Google Scholar 

  20. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. 2013. “Lomonosov”: Supercomputing at Moscow State University. Contemporary High Performance Computing: From Petascale toward Exascale. Chapman & Hall/CRC Computational Science, Boca Raton, FL: CRC Press, pp. 283–307.

    Google Scholar 

  21. Kaur R., Kaur G., Gill R.K., Soni R., Bariwal J. 2014. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem. 87, 89–124.

    Article  PubMed  CAS  Google Scholar 

  22. Olazarán F.E., García-Pérez C.A., Bandyopadhyay D., Balderas-Rentería I., Reyes-Figueroa A.D., Henschke L., Rivera G. 2017. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors. J. Mol. Model. 23 (3), 85.

    Article  PubMed  CAS  Google Scholar 

  23. Nogales E., Wolf S.G., Downing K.H. 1998. Structure of the αβ tubulin dimer by electron crystallography. Nature. 391 (6663), 199–203.

    Article  PubMed  CAS  Google Scholar 

  24. Varzhabetyan L.R., Glazachev D.V., Nazaryan K.B. 2012. Molecular dynamics simulation study of tubulin dimer interaction with cytostatics. Mol. Biol. (Moscow). 46 (2), 316–321.

    Article  CAS  Google Scholar 

  25. Nepali K., Ojha R., Sharma S., Bedi P., Dhar K. 2014. Tubulin inhibitors: A patent survey. Recent Pat. Anticancer Drug Discov. 9 (2), 176–220.

    Article  PubMed  CAS  Google Scholar 

  26. Chaudhary V., Venghateri J.B., Dhaked H.P., Bhoyar A.S., Guchhait S.K., Panda D. 2016. Novel combretastatin-2-aminoimidazole analogues as potent tubulin assembly inhibitors: Exploration of unique pharmacophoric impact of bridging skeleton and aryl moiety. J. Med. Chem. 59 (7), 3439–3451.

    Article  PubMed  CAS  Google Scholar 

  27. Salum L.B., Altei W.F., Chiaradia L.D., Cordeiro M.N., Canevarolo R.R., Melo C.P., Winter E., Mattei B., Daghestani H.N., Santos-Silva M.C., Creczynski-Pasa T.B., Yunes R.A., Yunes J.A., Andricopulo A.D., Day B.W., et al. 2013. Cytotoxic3,4,5-trimethoxychalcones as mitotic arresters and cell migration inhibitors. Eur. J. Med. Chem. 63, 501–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Sahakyan.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 4, pp. 699–704.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahakyan, H.K., Arakelov, G.G. & Nazaryan, K.B. In silico Search for Tubulin Polymerization Inhibitors. Mol Biol 52, 604–608 (2018). https://doi.org/10.1134/S0026893318040179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318040179

Keywords

Navigation