Skip to main content
Log in

A DNA Construct That Encodes the Rabies Virus Consensus Glycoprotein with a Proteasome Degradation Signal Induces Antibody Production with IgG2A Subtype Predominance

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The possibility of enhancing the immunogenicity of the rabies virus glycoprotein antigen encoded by a DNA vaccine has been investigated. Ubiquitin-like protein FAT10 has been attached to the N-terminus of the glycoprotein to target it to the proteasome and stimulate its presentation by MHC class I. Two forms of the protein, chimeric and original, have been detected in cells transfected with the DNA construct encoding the chimeric protein. The presence of the glycoprotein on the cell surface has been detected by immunostaining of transfected cells. The production of IgG and IgG2a antibodies has been more efficiently induced in mice immunized with the plasmid that encodes the chimeric protein than in those immunized with the plasmid that encodes unmodified glycoprotein. Moreover, the level of IgG2a antibodies exceeded the level of IgG1 antibodies, which indicates a preferential increase in the Th1 component of the immune response. The proposed DNA construct that encodes a modified glycoprotein with a proteasome degradation signal may be a promising DNA vaccine immunogen for post-exposure prophylaxis of rabies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaur M., Garg R., Singh S., et al. 2015. Rabies vaccines: Where do we stand, where are we heading? Expert Rev. Vaccines. 14, 369–381.

    Article  PubMed  CAS  Google Scholar 

  2. Starodubova E.S., Preobrazhenskaya O.V., Kuzmenko Y.V., et al. 2015. Rabies vaccines: Current status and prospects for development. Mol. Biol. (Moscow). 49, 513–519.

    Article  CAS  Google Scholar 

  3. Siegrist C.A. 2008. Vaccine immunology. In: Vaccines, 5th ed. Eds. Plotkin S.A., Orenstein W.A., Offit P.A. Elsevier, pp. 17–36.

    Google Scholar 

  4. Saade F., Petrovsky N. 2012. Technologies for enhanced efficacy of DNA vaccines. Expert Rev. Vaccines. 11, 189–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang G., Pan L., Zhang Y. 2011. Approaches to improved targeting of DNA vaccines. Hum. Vaccines. 7, 1271–1281.

    Article  CAS  Google Scholar 

  6. Starodubova E.S., Isaguliants M.G., Karpov V.L. 2010. Regulation of immunogen processing: Signal sequences and their application for the new generation of DNA-vaccines. Acta Naturae. 2, 53–59.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Sijts E.J., Kloetzel P.M. 2011. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell. Mol. Life Sci. 68, 1491–1502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fan W., Liu Y.C., Parimoo S., et al. 1995. Olfactory receptor-like genes are located in the human major histocompatibility complex. Genomics. 27, 119–123.

    Article  PubMed  CAS  Google Scholar 

  9. Schmidtke G., Aichem A., Groettrup M. 2014. FAT10ylation as a signal for proteasomal degradation. Biochim. Biophys. Acta. 1843, 97–102.

    Article  PubMed  CAS  Google Scholar 

  10. Hipp M.S., Kalveram B., Raasi S., et al. 2005. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell. Biol. 25, 3483–3491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schmidtke G., Kalveram B., Groettrup M. 2009. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett. 583, 591–594.

    Article  PubMed  CAS  Google Scholar 

  12. Ebstein F., Lehmann A., Kloetzel P.M. 2012. The FAT10-and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation. Cell. Mol. Life Sci. 69, 2443–2454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schliehe C., Bitzer A., van den Broek M., et al. 2012. Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J. Virol. 86, 9782–9793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Grabko V.I. 1991. RF Patent 2008355.

    Google Scholar 

  15. Starodubova E.S., Kuzmenko Y.V., Latanova A.A., et al. 2016. Creation of DNA vaccine vector based on codon-optimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence. Mol. Biol. (Moscow). 50, 328–331.

    Article  CAS  Google Scholar 

  16. Tomar N.R., Chandra R., Kumar R., et al. 2011. Expression of rabies virus glycoprotein gene into eukaryotic system and determination of potential T-cell epitopes. Indian J. Exp. Biol. 49, 594–599.

    PubMed  CAS  Google Scholar 

  17. Li L., Petrovsky N. 2016. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev. Vaccines. 15, 313–329.

    Article  PubMed  CAS  Google Scholar 

  18. Li L., Saade F., Petrovsky N. 2012. The future of human DNA vaccines. J. Biotechnol. 162, 171–182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang Q., Lei C., Wan H., et al. 2012. Improved cellular immune response elicited by a ubiquitin-fused DNA vaccine against Mycobacterium tuberculosis. DNA Cell Biol. 31, 489–495.

    Article  PubMed  CAS  Google Scholar 

  20. Wong S.B., Buck C.B., Shen X., et al. 2004. An evaluation of enforced rapid proteasomal degradation as a means of enhancing vaccine-induced CTL responses. J. Immunol. 173, 3073–3083.

    Article  PubMed  CAS  Google Scholar 

  21. Kaur M., Rai A., Bhatnagar R. 2009. Rabies DNA vaccine: No impact of MHC class I and class II targeting sequences on immune response and protection against lethal challenge. Vaccine. 27, 2128–2137.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Starodubova.

Additional information

Original Russian Text © E.S. Starodubova, Yu.V. Kuzmenko, E.O. Pankova, A.A. Latanova, O.V. Preobrazhenskaya, V.L. Karpov, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 3, pp. 527–532.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubova, E.S., Kuzmenko, Y.V., Pankova, E.O. et al. A DNA Construct That Encodes the Rabies Virus Consensus Glycoprotein with a Proteasome Degradation Signal Induces Antibody Production with IgG2A Subtype Predominance. Mol Biol 52, 453–457 (2018). https://doi.org/10.1134/S0026893318030135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318030135

Keywords

Navigation