Molecular Biology

, Volume 52, Issue 3, pp 406–413 | Cite as

Inhibition of Histone Deacetylases Reverses Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through a Slug Mediated Mechanism

  • A. Rahimian
  • G. Barati
  • R. Mehrandish
  • A. A. Mellati
Molecular Cell Biology

Abstract

High metastatic ability and poor clinical outcome are the most known clinical features of the triple- negative breast tumors. Given that the tumor cells undergoing epithelial-mesenchymal transition (EMT) often gain malignant and invasive features, we have investigated the possibility of EMT reversal in triple-negative breast cancer cells by targeting the epigenetic-modifying enzymatic complexes named histone deacetylases (HDACs) and examined the possible mechanism underlying the HDACs-based inversion in model MDA-MB-231 cells. Cells were treated with a maximal tolerable 200 nM concentrations of classical HDACs inhibitor Trichostatin A (TSA) for 48 h and afterwards the invasiveness and immigration of the cells were evaluated in TransWell Invasion Scratch Wound Healing assays. Then, in treated and control cells, quantitative real time-PCRreacions were performed for assessing the gene expression of EMT biomarkers E-cadherin, Vimentin and transcriptional factor Slug. After TSA treatment, the invasion and migration properties MDAMB- 231 cells significantly decreased, gene expression of E-cadherin was significantly up-regulated, while the levels of Slug and Vimentin encoding mRNAs were suppressed. We conclude that inhibition of HDACs in triple- negative breast cancer cells may lead to inversion of EMT and the decrease of invasiveness by down-regulating the gene expression of Slug. Since EMT is known as a pre-metastatic process, triple-negative breast tumors, the EMT reversal effects of HDACs inhibition may reduce tumor cell metastasis.

Keywords

breast cancer metastasis E-cadherin cell invasion Slug epithelial-mesenchymal transition histone deacetylases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brunßen A., Hübner J., Katalinic A., Noftz M.R., Waldmann A. 2016. In: Breast Cancer Epidemiology: Management of Breast Diseases. Springer, pp. 125–137.CrossRefGoogle Scholar
  2. 2.
    Ferlay J., Héry C., Autier P., Sankaranarayanan R. 2010. In: Global Burden of Breast Cancer: Breast Cancer Epidemiology. Springer, pp. 1–19.CrossRefGoogle Scholar
  3. 3.
    Kalluri R., Weinberg R.A. 2009. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kalluri R., Neilson E.G. 2003. Epithelial–mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zeisberg M., Neilson E.G. 2009. Biomarkers for epithelial–mesenchymal transitions. J. Clin. Invest. 119, 1429–1437.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kovacs E.M., Ali R.G., McCormack A.J. 2002. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–6718.CrossRefPubMedGoogle Scholar
  7. 7.
    Franke W.W., Schmid E., Osborn M., Weber K. 1978. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. Natl. Acad. Sci. U. S. A. 75, 5034–5038.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. 2009. Epithelial–mesenchymal transitions in development and disease. Cell. 139, 871–890.CrossRefPubMedGoogle Scholar
  9. 9.
    Bolós V., Peinado H., Pérez-Moreno M.A., et al. 2003. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. J. Cell Sci. 116, 499–511.CrossRefPubMedGoogle Scholar
  10. 10.
    Vuoriluoto K., Haugen H., Kiviluoto S., et al. 2011. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 30, 1436–1448.CrossRefPubMedGoogle Scholar
  11. 11.
    Haberland M., Montgomery R.L., Olson E.N. 2009. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 10, 32–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zentner G.E., Henikoff S. 2013. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266.CrossRefPubMedGoogle Scholar
  13. 13.
    Weichert W., Röske A., Gekeler V., et al. 2008. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer. 98, 604–610.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Weichert W., Röske A., Niesporek S., et al. 2008. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: Specific role of class I histone deacetylases in vitro and in vivo. Clin. Cancer Res. 14, 1669–1677.CrossRefPubMedGoogle Scholar
  15. 15.
    Minamiya Y., Ono T., Saito H., et al. 2011. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer. 74, 300–304.CrossRefPubMedGoogle Scholar
  16. 16.
    Rikimaru T., Taketomi A., Yamashita Y.I., et al. 2007. Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology. 72, 69–74.CrossRefPubMedGoogle Scholar
  17. 17.
    West A.C., Johnstone R.W. 2014. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 124, 30–39.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Peinado H., Ballestar E., Esteller M., Cano A. 2004. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24, 306–319.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chomczynski P., Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159.CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshikawa M., Hishikawa K., Marumo T., Fujita T. 2007. Inhibition of histone deacetylase activity suppreßses epithelial-to-mesenchymal transition induced by TGF-ß1 in human renal epithelial cells. J. Am. Soc. Nephrol. 18, 58–65.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaimori A., Potter J.J., Choti M., et al. 2010. Histone deacetylase inhibition suppresses the transforming growth factor β1-induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology. 52, 1033–1045.CrossRefPubMedGoogle Scholar
  22. 22.
    Chikina A., Alexandrova A.Y. 2014. The cellular mechanisms and regulation of metastasis formation. Mol. Biol. (Moscow). 48, 165–180.CrossRefGoogle Scholar
  23. 23.
    Kong D., Ahmad A., Bao B, Li Y., Banerjee S., Sarkar F.H. 2012. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One. 7, e45045.CrossRefGoogle Scholar
  24. 24.
    Mason S.D., Joyce J.A. 2011. Proteolytic networks in cancer. Trends. Cell. Biol. 21, 228–237.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang X., Xu J., Wang H., et al. 2015. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial–mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells. Biochem. Biophys. Res. Commun. 456, 320–326.CrossRefPubMedGoogle Scholar
  26. 26.
    Li Y., Zhao Z., Xu C., et al. 2014. HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer Lett. (Amsterdam). 355, 130–140.CrossRefGoogle Scholar
  27. 27.
    Liu Y.N., Abou-Kheir W., Yin J.J., et al. 2012. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial–mesenchymal transition. Mol. Cell. Biol. 32, 941–953.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jing Y., Cui D., Guo W., et al. 2014. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett. (Amsterdam). 348, 135–145.CrossRefGoogle Scholar
  29. 29.
    Shih J.Y., Yang P.C. 2011. The EMT regulator slug and lung carcinogenesis. Carcinogenesis. 32, 1299–1304.CrossRefPubMedGoogle Scholar
  30. 30.
    Tang Y., Liang X., Zhu G., Zheng M., Yang J., Chen Y. 2010. Expression and importance of zinc-finger transcription factor Slug in adenoid cystic carcinoma of salivary gland. J. Oral Pathol. Med. 39, 775–780.CrossRefPubMedGoogle Scholar
  31. 31.
    Hasan M.R., Sharma R., Saraya A., et al. 2013. Slug is a predictor of poor prognosis in esophageal squamous cell carcinoma patients. PLoS One. 8, e82846.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. Rahimian
    • 1
  • G. Barati
    • 2
  • R. Mehrandish
    • 1
  • A. A. Mellati
    • 1
  1. 1.Department of Biochemistry, School of MedicineZanjan University of Medical SciencesZanjanIran
  2. 2.Department of Medical Biotechnology and Nanotechnology, School of MedicineZanjan University of Medical SciencesZanjanIran

Personalised recommendations