Molecular Biology

, Volume 52, Issue 3, pp 414–418 | Cite as

Suppression of NR0B2 gene in Clear Cell Renal Cell Carcinoma Is Associated with Hypermethylation of Its Promoter

  • A. V. Kudryavtseva
  • K. M. Nyushko
  • A. R. Zaretsky
  • D. A. Shagin
  • A. F. Sadritdinova
  • M. S. Fedorova
  • M. V. Savvateeva
  • Z. G. Guvatova
  • E. A. Pudova
  • B. Y. Alekseev
  • A. A. Dmitriev
  • A. V. Snezhkina
Molecular Cell Biology


Clear cell renal cell carcinoma (ccRCC) is a common urologic malignancy. Understanding of the transcriptional regulation of oncogenes and tumor suppressor genes involved is critical for the development of the treatments for renal tumors. Using ccRCC subdivision of the TCGA dataset, we identified NR0B2 encoding orphan nuclear receptor as a tumor suppressor candidate in renal tissue. In independent cohort of primary renal tumors, quantitative PCR experiments confirmed significant suppression of NR0B2 mRNA in 86% of ccRCC samples studied. In 80% of these cases, we detected the hypermethylation of the NR0B2 promoter region. These results suggest that NR0B2 is a tumor suppressor gene in ccRCC, and that the hypermethylation of promoter region is the main mechanism of its downregulation.


clear cell renal cell carcinoma NR0B2 quantitative PCR bisulfite sequencing tumor suppressor gene DNA methylation 



quantitative PCR


clear cell renal cell carcinoma


RNA sequencing


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hollingsworth J.M., Miller D.C., Daignault S., Hollenbeck B.K. 2006. Rising incidence of small renal masses: A need to reassess treatment effect. J. Natl. Cancer Inst. 98, 1331–1334.CrossRefPubMedGoogle Scholar
  2. 2.
    Mariotti S., Barravecchia I., Vindigni C., et al. 2016. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion. Oncotarget. 7, 1808–1825.CrossRefPubMedGoogle Scholar
  3. 3.
    Loginov V.I., Dmitriev A.A., Senchenko V.N., et al. 2015. Tumor suppressor function of the SEMA3B gene in human lung and renal cancers. PLoS One. 10, e0123369.CrossRefGoogle Scholar
  4. 4.
    Dmitriev A.A., Rudenko E.E., Kudryavtseva A.V., et al. 2014. Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed. Res. Int. 2014, 735292.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Braga E.A., Khodyrev D.S., Loginov V.I., et al. 2015. Methylation in the regulation of the expression of chromosome 3 and microRNA genes in clear-cell renal cell carcinomas. Russ. J. Genet. 51, 566–581.CrossRefGoogle Scholar
  6. 6.
    Oparina N.Y., Snezhkina A.V., Sadritdinova A.F., et al. 2013. Differential expression of genes that encode glycolysis enzymes in kidney and lung cancer in humans. Russ. J. Genet. 49, 707–716.CrossRefGoogle Scholar
  7. 7.
    Oparina N.Y., Sadritdinova A.F., Snezhkina A.V. et al. 2012. Increase in gene expression is a potential molecular genetic marker in renal and lung cancers. Russ. J. Genet. 48, 506–512.CrossRefGoogle Scholar
  8. 8.
    Kudriavtseva A.V., Anedchenko E.A., Oparina N.Y., et al. 2009. Expression of FTL and FTH genes encoding ferritin subunits in lung and renal carcinomas. Mol. Biol. (Moscow). 43, 972–981.CrossRefGoogle Scholar
  9. 9.
    Tseng H.T., Park Y.J., Lee Y.K., Moore D.D. 2015. The orphan nuclear receptor small heterodimer partner is required for thiazolidinedione effects in leptin-deficient mice. J. Biomed. Sci. 22, 30.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nishigori H., Tomura H., Tonooka N., et al. 2001. Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc. Natl. Acad. Sci. U. S. A. 98, 575–580.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mitchell S.M., Weedon M.N., Owen K.R., et al. 2003. Genetic variation in the small heterodimer partner gene and young-onset type 2 diabetes, obesity, and birth weight in U.K. subjects. Diabetes. 52, 1276–1279.CrossRefPubMedGoogle Scholar
  12. 12.
    Echwald S.M., Andersen K.L., Sorensen T.I., et al. 2004. Mutation analysis of NR0B2 among 1545 Danish men identifies a novel c.278G>A (p.G93D) variant with reduced functional activity. Hum. Mutat. 24, 381–387.CrossRefPubMedGoogle Scholar
  13. 13.
    Zou A., Lehn S., Magee N., Zhang Y. 2015. New insights into orphan nuclear receptor SHP in liver cancer. Nucl. Receptor Res. 2, 101162.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krasnov G.S., Dmitriev A.A., Melnikova N.V., et al. 2016. CrossHub: A tool for multi-way analysis of The Cancer Genome Atlas (TCGA) in the context of gene 44, e62.Google Scholar
  15. 15.
    Krasnov G.S., Oparina N.Y., Dmitriev A.A., et al. 2011. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer. Mol. Biol. (Moscow). 45, 211–220.CrossRefGoogle Scholar
  16. 16.
    Fedorova M.S., Kudryavtseva A.V., Lakunina V.A. et al. 2015. Downregulation of OGDHL expression is associated with promoter hypermethylation in colorectal cancer. Mol. Biol. (Moscow). 49, 608–617.CrossRefGoogle Scholar
  17. 17.
    Snezhkina A.V., Krasnov G.S., Lipatova A.V., et al. 2016. The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c-Myc and C/EBPbeta rather than enterotoxigenic Bacteroides fragilis infection. Oxid. Med. Cell Longev. 2016, 2353560.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Senchenko V.N., Krasnov G.S., Dmitriev A.A., et al. 2011. Differential expression of CHL1 gene during development of major human cancers. PLoS One. 6, e15612.CrossRefGoogle Scholar
  19. 19.
    Melnikova N.V., Dmitriev A.A., Belenikin M.S., et al. 2016. Identification, expression analysis, and target prediction of flax genotroph microRNAs under normal and nutrient stress conditions. Front. Plant Sci. 7, 399.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dmitriev A.A., Kudryavtseva A.V., Krasnov G.S., et al. 2016. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol. 16, 237.CrossRefPubMedGoogle Scholar
  21. 21.
    Dmitriev A.A., Krasnov G.S., Rozhmina T.A., et al. 2016. Glutathione S-transferases and UDP-glycosyltransferases are involved in response to aluminum stress in flax. Front. Plant Sci. 7, 1920.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    He N., Park K., Zhang Y., et al. 2008. Epigenetic inhibition of nuclear receptor small heterodimer partner is associated with and regulates hepatocellular carcinoma growth. Gastroenterology. 134, 793–802.CrossRefPubMedGoogle Scholar
  23. 23.
    Seol W., Choi H.S., Moore D.D. 1996. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science. 272, 1336–1339.CrossRefPubMedGoogle Scholar
  24. 24.
    Goodwin B., Jones S.A., Price R.R., et al. 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell. 6, 517–526.CrossRefPubMedGoogle Scholar
  25. 25.
    Nishizawa H., Yamagata K., Shimomura I., et al. 2002. Small heterodimer partner, an orphan nuclear receptor, augments peroxisome proliferator-activated receptor gamma transactivation. J. Biol. Chem. 277, 1586–1592.CrossRefPubMedGoogle Scholar
  26. 26.
    Seol W., Hanstein B., Brown M., Moore D.D. 1998. Inhibition of estrogen receptor action by the orphan receptor SHP (short heterodimer partner). Mol. Endocrinol. 12, 1551–1557.CrossRefPubMedGoogle Scholar
  27. 27.
    Lalli E., Sassone-Corsi P. 2003. DAX-1, an unusual orphan receptor at the crossroads of steroidogenic function and sexual differentiation. Mol. Endocrinol. 17, 1445–1453.CrossRefPubMedGoogle Scholar
  28. 28.
    Yuk J.M., Shin D.M., Lee H.M., et al. 2011. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat. Immunol. 12, 742–751.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang Y., Xu P., Park K., et al. 2008. Orphan receptor small heterodimer partner suppresses tumorigenesis by modulating cyclin D1 expression and cellular proliferation. Hepatology. 48, 289–298.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Johansson L., Thomsen J.S., Damdimopoulos A.E., et al. 1999. The orphan nuclear receptor SHP inhibits agonist-dependent transcriptional activity of estrogen receptors ERalpha and ERbeta. J. Biol. Chem. 274, 345–353.CrossRefPubMedGoogle Scholar
  31. 31.
    Lu T.T., Makishima M., Repa J.J., et al. 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell. 6, 507–515.CrossRefPubMedGoogle Scholar
  32. 32.
    Boulias K., Katrakili N., Bamberg K., et al. 2005. Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO J. 24, 2624–2633.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Borgius L.J., Steffensen K.R., Gustafsson J.A., Treuter E. 2002. Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J. Biol. Chem. 277, 49761–49766.CrossRefPubMedGoogle Scholar
  34. 34.
    Yamagata K., Daitoku H., Shimamoto Y., et al. 2004. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 279, 23158–23165.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee H.K., Lee Y.K., Park S.H., et al. 1998. Structure and expression of the orphan nuclear receptor SHP gene. J. Biol. Chem. 273, 14398–14402.CrossRefPubMedGoogle Scholar
  36. 36.
    Sanyal S., Kim J.Y., Kim H.J., et al. 2002. Differential regulation of the orphan nuclear receptor small heterodimer partner (SHP) gene promoter by orphan nuclear receptor ERR isoforms. J. Biol. Chem. 277, 1739–1748.CrossRefPubMedGoogle Scholar
  37. 37.
    Xie Y.L., Liang J.Z., Liu F.Y., et al. 2010. Inhibitory effect of SHP-1 gene transfer on the proliferation of breast cancer cell line MDA-MB-231. Nan Fang Yi Ke Da Xue Xue Bao. 30, 1024–1027.PubMedGoogle Scholar
  38. 38.
    Insabato L., Amelio I., Quarto M., et al. 2009. Elevated expression of the tyrosine phosphatase SHP-1 defines a subset of high-grade breast tumors. Oncology. 77, 378–384.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu C., Guan Q., Wang Y., et al. 2003. SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J. Cell. Biochem. 90, 1026–1037.CrossRefPubMedGoogle Scholar
  40. 40.
    Xu S.B., Liu X.H., Li B.H., et al. 2009. DNA methylation regulates constitutive expression of Stat6 regulatory genes SOCS-1 and SHP-1 in colon cancer cells. J. Cancer Res. Clin. Oncol. 135, 1791–1798.CrossRefPubMedGoogle Scholar
  41. 41.
    Park Y.Y., Choi H.S.,Lee J.S. 2010. Systems-level analysis of gene expression data revealed NR0B2/SHP as potential tumor suppressor in human liver cancer. Mol. Cells. 30, 485–491.CrossRefPubMedGoogle Scholar
  42. 42.
    Prestin K., Olbert M., Hussner J., et al. 2016. Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1) and its impact on proliferation of renal carcinoma cells. Onco Targets Ther. 9, 4867–4878.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Arai E., Sakamoto H., Ichikawa H., et al. 2014. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int. J. Cancer. 135, 1330–1342.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Kudryavtseva
    • 1
    • 2
  • K. M. Nyushko
    • 2
  • A. R. Zaretsky
    • 3
    • 4
  • D. A. Shagin
    • 3
  • A. F. Sadritdinova
    • 1
    • 2
  • M. S. Fedorova
    • 1
  • M. V. Savvateeva
    • 1
  • Z. G. Guvatova
    • 1
  • E. A. Pudova
    • 1
  • B. Y. Alekseev
    • 2
  • A. A. Dmitriev
    • 1
  • A. V. Snezhkina
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.National Medical Research Radiological CenterMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Pirogov Russian National Research Medical UniversityMoscowRussia
  4. 4.Evrogen Lab LCCMoscowRussia

Personalised recommendations