Skip to main content
Log in

AICAR-Dependent Activation of AMPK Kinase Is Not Accompanied by G1/S Block in Mouse Embryonic Stem Cells

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Embryonic stem cells (ESCs) have the capacity for self-renewal and pluripotency. Due to high proliferative activity, ESCs use a specific pathway of the formation of ATP molecules, which can lead to the development of the adaptive metabolic response under the conditions of energy deficiency (which is different from the response of differentiated cells). It is known that metabolic signals are integrated with the cell cycle progression; however, the signaling pathways that connect the availability of nutrients with the regulation of cell cycle in ESCs are insufficiently studied. We have studied the effect of the AICAR agent, which imitates an increase in AMP level and induces the activation of the metabolic sensor AMPK, on proliferation, cell cycle distribution, and pluripotency of mouse ESCs (mESCs). It has been demonstrated that cells treated with AICAR do not stop at the control G1/S point of the cell cycle, since they do not accumulate P21/WAF1 (G1/S checkpoint regulator), despite P53 activation. On the contrary, AICAR increases the rate of mESC proliferation, which correlates with increased expression of pluripotency marker genes (OCT3/4, NANOG, SOX2, KLF4, ESRRB, PRDM14). In addition, an increase in the transcription of the HIF1α gene (a key regulator of the cell proliferation and viability, as well as glucose metabolism under stress) was detected. An increase in the expression of glycolytic enzyme genes (LDHA, ALDOA, PCK2, GLUT4) under the effect of AICAR indicates a change in mESC metabolism towards increased glycolysis. Thus, AICAR-dependent AMPK activation as one of possible mechanisms of the mESC adaptive response to the emergence of energetic imbalance is not accompanied by a cell cycle arrest at the G1/S checkpoint, but involves the processes of increasing glycolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AICAR:

5-aminoimidazole-4-carboxamide ribonucleotide

AMPK:

AMP-activated protein kinase

LDHA:

lactate dehydrogenase A

ALDOA:

aldolase A

PCK2:

phosphoenolpyruvate carboxykinase 2

GLUT4 and GLUT1:

glucose transporter types 4 and 1

RA:

retinoic acid

References

  1. Malashicheva A.B., Kisliakova T.V., Pospelov V.A. 2002. Embryonal stem cells do not undergo cell cycle arrest upon exposure to damaging factors. Tsitologiya. 44, 649–655.

    CAS  Google Scholar 

  2. Chuykin I.A., Lianguzova M.S., Pospelova T.V., Pospelov V.A. 2008. Activation of DNA damage response signaling in mouse embryonic stem cells. Cell Cycle. 7, 2922–2928.

    Article  PubMed  CAS  Google Scholar 

  3. Becker K.A., Ghule P.N., Therrien J.A., et al. 2006. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell. Physiol. 209, 883–893.

    Article  PubMed  CAS  Google Scholar 

  4. Suvorova I.I., Katolikova N.V., Pospelov V.A. 2012. New insights into cell cycle regulation and DNA damage response in embryonic stem cells. Int. Rev. Cell. Mol. Biol. 299, 161–198.

    Article  PubMed  CAS  Google Scholar 

  5. Prigione A., Adjaye J. 2010. Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells. Int. J. Dev. Biol. 54, 1729–1741.

    Article  PubMed  Google Scholar 

  6. Varum S., Rodrigues A.S., Moura M.B., et al. 2011. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 6, e20914.

    Article  CAS  Google Scholar 

  7. Folmes C.D., Nelson T.J., Martinez-Fernandez A., et al. 2011. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell. Metab. 14, 264–271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang J., Khvorostov I., Hong J.S., et al. 2011. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30, 4860–4873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Warburg O. 1956. On the origin of cancer cells. Science. 123, 309–314.

    Article  PubMed  CAS  Google Scholar 

  10. Gardner D.K. 2015. Lactate production by the mammalian blastocyst: Manipulating the microenvironment for uterine implantation and invasion? Bioessays. 37, 364–371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wu M., Neilson A., Swift A.L., et al. 2007. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol.: Cell Physiol. 292, 125–136.

    Article  CAS  Google Scholar 

  12. Facucho-Oliveira J.M., Alderson J., Spikings E.C., et al. 2007. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120, 4025–4034.

    Article  PubMed  CAS  Google Scholar 

  13. Todd L.R., Damin M.N., Gomathinayagam R., et al. 2010. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol. Biol. Cell. 21, 1225–1236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mandal S., Lindgren A.G., Srivastava A.S., et al. 2011. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells. 29, 486–495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rafalski V.A., Mancini E., Brunet A. 2012. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell. Sci. 125, 5597–608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cherepkova M.Y., Sineva G.S., Pospelov V.A. 2016. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 14, e2050.

    Article  Google Scholar 

  17. Chen H., Liu X., Chen H., et al. 2014. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res. Rev. 13, 55–64.

    Article  PubMed  CAS  Google Scholar 

  18. Qu J., Lu D., Guo H., et al. 2016. MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol. Cell. Biochem. 411, 23–33.

    Article  PubMed  CAS  Google Scholar 

  19. Jones R.G., Plas D.R., Kubek S., et al. 2005. AMPactivated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell. 18, 283–293.

    Article  PubMed  CAS  Google Scholar 

  20. Dasgupta B., Milbrandt J. 2009. AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev. Cell. 16, 256–270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Imamura K., Ogura T., Kishimoto A., et al. 2001. Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287, 562–567.

    Article  PubMed  CAS  Google Scholar 

  22. Zang Y., Yu L.F., Nan F.J., et al. 2009. AMP-activated protein kinase is involved in neural stem cell growth suppression and cell cycle arrest by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and glucose deprivation by down-regulating phospho-retinoblastoma protein and cyclin D. Biol. Chem. 284, 6175–6184.

    Article  CAS  Google Scholar 

  23. Rattan R., Giri S., Singh A.K., Singh I. 2005. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582–39593.

    Article  PubMed  CAS  Google Scholar 

  24. Liang X., Wang P., Gao Q., Tao X. 2014. Exogenous activation of LKB1/AMPK signaling induces G1 arrest in cells with endogenous LKB1 expression. Mol. Med. Rep. 9, 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  25. Teng H., Sui X., Zhou C., et al. 2016. Fatty acid degradation plays an essential role in proliferation of mouse female primordial germ cells via the p53-dependent cell cycle regulation. Cell Cycle. 15, 425–431.

    Article  PubMed  CAS  Google Scholar 

  26. Cai X., Hu X., Tan X., et al. 2015. Metformin induced AMPK activation, G0/G1 phase cell cycle arrest and the inhibition of growth of esophageal squamous cell carcinomas in vitro and in vivo. PLoS One. 10, e0133349.

    Google Scholar 

  27. van Meerloo J., Kaspers G., Cloos J. 2011. Cell sensitivity assays: The MTT assay. Meth. Mol. Biol. 731, 237–245.

    Article  CAS  Google Scholar 

  28. Vallier L. 2015. Cell cycle rules pluripotency. Cell Stem Cell. 17, 131–132.

    Article  PubMed  CAS  Google Scholar 

  29. Wu S.B., Wei Y.H. 2012. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases. Biochim. Biophys. Acta. 182, 233–247.

    Article  CAS  Google Scholar 

  30. Shestov A.A., Mancuso A., Leeper D.B., Glickson J.D. 2013. Metabolic network analysis of DB1 melanoma cells: How much energy is derived from aerobic glycolysis? Adv. Exp. Med. Biol. 765, 265–271.

    Article  PubMed  CAS  Google Scholar 

  31. Schuster S., Boley D., Möller P., et al. 2015. Mathematical models for explaining the Warburg effect: A review focussed on ATP and biomass production. Biochem. Soc. Trans. 43, 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  32. Watford M., Hod Y., Chiao Y.B., et al. 1981. The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. J. Biol. Chem. 256, 10023–10027.

    PubMed  CAS  Google Scholar 

  33. Leithner K., Hrzenjak A., Trötzmüller M., et al. 2015. PCK2 activation mediates an adaptive response to glucose depletion in lung cancer. Oncogene. 34, 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  34. Zhou W., Choi C., Margineantu D., et al. 2012. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-EpiSC transition. EMBO J. 31, 2103–2116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lu H., Forbes R.A., Verma A. 2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 277, 23111–23115.

    Article  PubMed  CAS  Google Scholar 

  36. Vazquez-Martin A., Vellon L., Quirós P.M., et al. 2012. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle. 11, 974–989.

    Article  PubMed  CAS  Google Scholar 

  37. Suvorova I.I., Grigorash B.B., Chuykin I.A., Pospelova T.V., Pospelov V.A. 2016. G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling. Cell Cycle. 15, 52–63.

    Article  PubMed  CAS  Google Scholar 

  38. Suvorova I.I., Pospelov V.A. 2014. Analysis of irradiation-induced repair foci in mouse embryonic stem cells. Tsitologiya. 56, 340–345.

    CAS  Google Scholar 

  39. Jang H., Kim Tae W., Yoon S., et al. 2012. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell. 11, 62–74.

    Article  PubMed  CAS  Google Scholar 

  40. Panopoulos A.D., Yanes O., Ruiz S., et al. 2012. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177.

    Article  PubMed  CAS  Google Scholar 

  41. Mathieu J., Zhou W., Xing Y., et al. 2014. Hypoxiainducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. 14, 592–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim H., Jang H., Kim T.W., et al. 2015. Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells. 33, 2699–2711.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Suvorova.

Additional information

Original Russian Text © B.B. Grigorash, I.I. Suvorova, V.A. Pospelov, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 3, pp. 489–500.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorash, B.B., Suvorova, I.I. & Pospelov, V.A. AICAR-Dependent Activation of AMPK Kinase Is Not Accompanied by G1/S Block in Mouse Embryonic Stem Cells. Mol Biol 52, 419–429 (2018). https://doi.org/10.1134/S0026893318030056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318030056

Keywords

Navigation