Advertisement

Molecular Biology

, Volume 52, Issue 3, pp 458–466 | Cite as

Substrate Properties of New Fluorescently Labeled Deoxycytidine Triphosphates in Enzymatic Synthesis of DNA with Polymerases of Families A and B

  • D. O. Fesenko
  • T. O. Guseinov
  • S. A. Lapa
  • V. E. Kuznetsova
  • V. E. Shershov
  • M. A. Spitsyn
  • T. V. Nasedkina
  • A. S. Zasedatelev
  • A. V. Chudinov
Structural Functional Analysis of Biopolymers and Their Complexes
  • 13 Downloads

Abstract

The efficiency of the incorporation of fluorescently labeled derivatives of 2'-deoxycytidine in DNA synthesized de novo has been studied using PCR with Taq and Tth polymerases of family A and Vent (exo–) and Deep Vent (exo–) polymerases of family B. Four derivatives of 5'-triphosphate-2'-deoxycytidine (dCTP) have different chemical structures of the indodicarbocyanine dye and Cy5 analogue attached to position 5 of cytosine. The kinetics of the accumulation of the PCR products and the intensity of the fluorescent signals in the hybridization analysis with immobilized DNA probes depend on the modification of the fluorescently labeled dCTP counterpart, its concentration, and the type of DNA polymerase. All labeled triphosphates showed some inhibitory effects on PCR. The best balance between the efficiency of incorporating labeled cytidine derivatives and the negative effect on the PCR kinetics has been shown in the case of Hot Taq polymerase in combination with the Cy5-dCTP analogue, which contains containing electrically neutral chromophore, the axis of which is a continuation of the linker between the chromophore and the pyrimidine base.

Keywords

modified nucleotides 2'-deoxycytidine-5'-triphosphate cyanine dyes substrate specificity DNA polymerases asymmetric PCR real-time PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bendavid C., Haddad B.R., Griffin A., et al. 2006. Multicolour FISH and quantitative PCR can detect submicroscopic deletions in holoprosencephaly patients with a normal karyotype. J. Med. Genet. 43, 496–500.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vora G.J., Meador C.E., Anderson G.P., Taitt C.R. 2008. Comparison of detection and signal amplification methods for DNA microarrays. Mol. Cell. Probes. 22, 294–300.CrossRefPubMedGoogle Scholar
  3. 3.
    Metzker M.L. 2010. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46.CrossRefPubMedGoogle Scholar
  4. 4.
    Maya-Mendoza A., Olivares-Chauvet P., Kohlmeier F., Jackson D.A. 2012. Visualising chromosomal replication sites and replicons in mammalian cells. Methods. 57, 140–148.CrossRefPubMedGoogle Scholar
  5. 5.
    Cao B., Liu X., Yu X., et al. 2014. A new oligonucleotide microarray for detection of pathogenic and nonpathogenic Legionella spp. PLoS One. 9, e113863.CrossRefGoogle Scholar
  6. 6.
    Fesenko D.O., Mityaeva O.N., Nasedkina T.V., et al. 2010. HLA-DQA1, AB0, and AMEL genotyping of biological material with biochips. Mol. Biol. (Moscow). 44, 401–406.CrossRefGoogle Scholar
  7. 7.
    Kling D., Welander J., Tillmar A., et al. 2012. DNA microarray as a tool in establishing genetic relatedness: Current status and future prospects. Forensic Sci. Int. Genet. 6, 322–329.CrossRefPubMedGoogle Scholar
  8. 8.
    Ares M. 2014. Preparation of fluorescent-dye-labeled cDNA from RNA for microarray hybridization. Cold Spring Harb. Protoc. 1, 119–123.Google Scholar
  9. 9.
    Hoffmann J., Trotter M., von Stetten F., et al. 2012. Solid-phase PCR in a picowell array for immobilizing and arraying 100000 PCR products to a microscope slide. Lab. Chip. 12, 3049–3054.CrossRefPubMedGoogle Scholar
  10. 10.
    Scaravilli M., Asero P., Tammela T.L., et al. 2014. Mapping of the chromosomal amplification 1p21-22 in bladder cancer. BMC Res. Notes. 7, 547.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hirano K., Yoshida Y., Ishido T., et al. 2010. Consecutive incorporation of fluorophore-labeled nucleotides by mammalian DNA polymerase beta. Anal. Biochem. 405, 160–167.CrossRefPubMedGoogle Scholar
  12. 12.
    Hwang G.T., Romesberg F.E. 2006. Substituent effects on the pairing and polymerase recognition of simple unnatural base pairs. Nucleic Acids Res. 34, 2037–2045.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tasara T., Angerer B., Damond M., et al. 2003. Incorporation of reporter molecule-labeled nucleotides by DNA polymerases: 2. High-density labeling of natural DNA. Nucleic Acids Res. 31, 2636–2646.PubMedGoogle Scholar
  14. 14.
    Fesenko D., Chudinov A., Surzhikov S., et al. 2014. Biochip for genotyping SNPs defining core Y-chromosome haplogroups in Russian population groups. Bio-Chip J. 8, 171–178.Google Scholar
  15. 15.
    Kuwahara M., Nagashima J., Hasegawa M., et al. 2006. Systematic characterization of 2'-deoxynucleoside-5'-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA. Nucleic Acids Res. 34, 5383–5394.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Anderson J.P., Angerer B., Loeb L.A. 2005. Incorporation of reporter-labeled nucleotides by DNA polymerases. Biotechniques. 38, 257–264.CrossRefPubMedGoogle Scholar
  17. 17.
    Al-Soud W.A., Radstrom P. 2001. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 39, 485–493.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ono T., Scalf M., Smith L.M. 1997. 2'-Fluoro modified nucleic acids: Polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. 25, 4581–4588.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Beard W.A., Shock D.D., Van de Berg B.J., Wilson S.H. 2002. Efficiency of correct nucleotide insertion governs DNA polymerase fidelity. J. Biol. Chem. 277, 47393–47398.CrossRefPubMedGoogle Scholar
  20. 20.
    Sawai H., Ozaki-Nakamura A., Mine M., Ozaki H. 2002. Synthesis of new modified DNAs by hyperthermophilic DNA polymerase: Substrate and template specificity of functionalized thymidine analogues bearing an sp3-hybridized carbon at the C5 alpha-position for several DNA polymerases. Bioconj. Chem. 13, 309–316.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. O. Fesenko
    • 1
  • T. O. Guseinov
    • 1
  • S. A. Lapa
    • 1
  • V. E. Kuznetsova
    • 1
  • V. E. Shershov
    • 1
  • M. A. Spitsyn
    • 1
  • T. V. Nasedkina
    • 1
  • A. S. Zasedatelev
    • 1
  • A. V. Chudinov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations