Skip to main content
Log in

The Novel Short Isoform of Securin Stimulates the Expression of Cyclin D3 and Angiogenesis Factors VEGFA and FGF2, but Does Not Affect the Expression of MYC Transcription Factor

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Pituitary tumor-transforming gene-1 (PTTG1) encodes securin, a multifunctional protein involved in development of various types of cancer. Securin participates in the regulation of sister chromatids separation and the expression of multiple genes involved in the control of the cell cycle, metabolism, and angiogenesis. In several human cell lines, we have found a novel short isoform of securin mRNA, which does not contain exons 3 and 4. After the translation of this new mRNA, a shortened protein is produced that, like the full-size form, is able to activate the transcription of cyclin D3 gene (CCND3), which controls the G1/S transition and angiogenesis factors VEGFA (vascular endothelial growth factor), and FGF2 (fibroblast growth factor 2) in HEK293 cells. However, unlike the full-size protein, the short isoform of PTTG1 does not affect the MYC gene expression because it lacks the DNA-binding domain, which is needed for its interactions with the MYC promoter. Furthermore, the short form of securin does not influence the expression of MYC transcriptional targets, such as TP53 and IL-8. Thus, we found a novel isoform of securin which is able to activate a more restricted repertoire of genes compared to the full-size protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PTTG1:

pituitary tumor-transforming gene-1

CCND3:

cyclin D3

VEGFA:

vascular endothelial growth factor

FGF2:

fibroblast growth factor 2

IL-8:

interleukin-8

APC:

anaphase promoting complex

SP1:

specificity protein 1

PBF:

PTTG1-binding factor

USF1:

upstream stimulatory factor 1. IPTG, isopropyl-β-D-1-thiogalactopyranoside, аa, amino acid residue

References

  1. Pei L., Melmed S. 1997. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol. 11, 433–441.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang X., Horwitz G.A., Heaney A.P., et al. 1999. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J. Clin. Endocrinol. Metabolism. 84, 761–767.

    Article  CAS  Google Scholar 

  3. Heaney A.P., Singson R., McCabe C.J., et al. 2000. Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet. 355, 716–719.

    Article  PubMed  CAS  Google Scholar 

  4. Heaney A.P., Nelson V., Fernando M., Horwitz G. 2001. Transforming events in thyroid tumorigenesis and their association with follicular lesions. J. Clin. Endocrinol. Metabolism. 86, 5025–5032.

    Article  CAS  Google Scholar 

  5. Solbach C., Roller M., Fellbaum C., et al. 2004. PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence. Breast. 13, 80–81.

    Article  PubMed  Google Scholar 

  6. Tsai S.J., Lin S.J., Cheng Y.M., et al. 2005. Expression and functional analysis of pituitary tumor transforming gene-1 [corrected] in uterine leiomyomas. J. Clin. Endocrinol. Metabolism. 90, 3715–3723.

    Article  CAS  Google Scholar 

  7. Wondergem B., Zhang Z., Huang D., et al. 2012. Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma. Cancer Res. 72, 4361–4371.

    Article  PubMed  CAS  Google Scholar 

  8. Hamid T., Malik M.T., Kakar S.S. 2005. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells. Mol. Cancer. 4, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cho-Rok J., Yoo J., Jang Y.J., et al. 2006. Adenovirusmediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology. 43, 1042–1052.

    Article  PubMed  CAS  Google Scholar 

  10. Waizenegger I., Gimenez-Abian J.F., Wernic D., Peters J.M. 2002. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12 (16), 1368–1378.

    Article  PubMed  CAS  Google Scholar 

  11. Zou H., McGarry T.J., Bernal T., Kirschner M.W. 1999. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science. 285, 418–422.

    Article  PubMed  CAS  Google Scholar 

  12. Jin L., Williamson A., Banerjee S., Philipp I., Rape M. 2008. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 133, 653–665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pfleger C.M., Kirschner M.W. 2000. The KEN box: An APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Ly T., Ahmad Y., Shlien A., et al. 2014. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. eLife. 3, e01630.

    Article  Google Scholar 

  15. Tong Y., Tan Y., Zhou C., Melmed S. 2007. Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition. Oncogene. 26, 5596–5605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pei L. 2001. Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J. Biol. C. 276, 8484–8491.

    Article  CAS  Google Scholar 

  17. Hamid T., Kakar S.S. 2004. PTTG/securin activates expression of p53 and modulates its function. Mol. Cancer. 3, 18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Horwitz G.A., Miklovsky I., Heaney A.P., R et al. 2003. Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression. Mol. Endocrinol. 17, 600–609.

    Article  PubMed  CAS  Google Scholar 

  19. Pore N., Liu S., Shu H.K., et al. 2004. Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol. Biol. Cell. 15, 4841–4853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chien W., Pei L. 2000. A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J. Biol. Chem. 275, 19422–19427.

    Article  PubMed  CAS  Google Scholar 

  21. Bernal J.A., Luna R., Espina A., et al. 2002. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat. Genet. 32, 306–311.

    Article  PubMed  CAS  Google Scholar 

  22. Karpova M.B., Schoumans J., Ernberg I., et al. 2005. Raji revisited: Cytogenetics of the original Burkitt’s lymphoma cell line. Leukemia. 19, 159–161.

    Article  PubMed  CAS  Google Scholar 

  23. Schneider U., Schwenk H.U., Bornkamm G. 1977. Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer. 19, 621–626.

    Article  PubMed  CAS  Google Scholar 

  24. Lemoine N.R., Mayall E.S., Jones T., et al. 1989. Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Br. J. Cancer. 60, 897–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lozzio C.B., Lozzio B.B. 1975. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 45, 321–334.

    PubMed  CAS  Google Scholar 

  26. Boyd D., Florent G., Kim P., Brattain M. 1988. Determination of the levels of urokinase and its receptor in human colon carcinoma cell lines. Cancer Res. 48, 3112–3116.

    PubMed  CAS  Google Scholar 

  27. Knowles B.B., Howe C.C., Aden D.P. 1980. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 209, 497–499.

    Article  PubMed  CAS  Google Scholar 

  28. Sugarman B.J., Aggarwal B.B., Hass P.E., et al. 1985. Recombinant human tumor necrosis factor-alpha: Effects on proliferation of normal and transformed cells in vitro. Science. 230, 943–945.

    Article  PubMed  CAS  Google Scholar 

  29. Shaw G., Morse S., Ararat M., Graham F.L. 2002. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 16, 869–871.

    Article  PubMed  CAS  Google Scholar 

  30. Savvateeva L.V., Schwartz A.M., Gorshkova L.B., et al. 2015. Prophylactic admission of an in vitro reconstructed complexes of human recombinant heat shock proteins and melanoma antigenic peptides activates anti-melanoma responses in mice. Curr. Mol. Med. 15, 462–468.

    Article  PubMed  CAS  Google Scholar 

  31. Afanasyeva M.A., Britanova L.V., Korneev K.V., et al. 2014. Clusterin is a potential lymphotoxin beta receptor target that is upregulated and accumulates in germinal centers of mouse spleen during immune response. PLoS One. 9, e98349.

    Article  CAS  Google Scholar 

  32. Schwartz A.M., Putlyaeva L.V., Covich M., et al. 2016. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells. Biochim. Biophys. Acta. 1859, 1259–1268.

    Article  PubMed  CAS  Google Scholar 

  33. Mitkin N.A., Hook C.D., Schwartz A.M., et al. 2015. p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells. Sci. Rep. 5, 9330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Harrow J., Frankish A., Gonzalez J.M., et al. 2012. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yates A., Akanni W., Amode M.R., et al. 2016. Ensembl 2016. Nucleic Acids Res. 44, D710–D716.

    Article  PubMed  CAS  Google Scholar 

  36. Pervouchine D.D., Knowles D.G., Guigo R. 2013. Intron-centric estimation of alternative splicing from RNA-seq data. Bioinformatics. 29, 273–274.

    Article  PubMed  CAS  Google Scholar 

  37. Mele M., Ferreira P.G., Reverter F., et al. 2015. Human genomics. The human transcriptome across tissues and individuals. Science. 348, 660–665.

    PubMed  CAS  Google Scholar 

  38. Sanchez-Puig N., Veprintsev D.B., Fersht A.R. 2005. Human full-length securin is a natively unfolded protein. Protein Sci. 14, 1410–1418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xu D., Zhang Y. 2012. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins. 80, 1715–1735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Boelaert K., Smith V.E., Stratford A.L., et al. 2007. PTTG and PBF repress the human sodium iodide symporter. Oncogene. 26, 4344–4356.

    Article  PubMed  CAS  Google Scholar 

  41. el-Deiry W.S., Tokino T., Velculescu V.E., et al. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell. 75, 817–825.

    Article  PubMed  CAS  Google Scholar 

  42. Fanning W.J., Thomas C.S., Jr., Roach A., et al. 1991. Prophylaxis of atrial fibrillation with magnesium sulfate after coronary artery bypass grafting. Ann. Thoracic Surgery. 52, 529–533.

    Article  CAS  Google Scholar 

  43. Barbosa-Morais N.L., Irimia M., Pan Q., et al. 2012. The evolutionary landscape of alternative splicing in vertebrate species. Science. 338, 1587–1583.

    Article  PubMed  CAS  Google Scholar 

  44. Wang E.T., Sandberg R., Luo S., et al. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature. 456, 470–476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Oaks M.K., Hallett K.M., Penwell R.T., et al. 2000. A native soluble form of CTLA-4. Cell. Immunol. 201, 144–153.

    Article  PubMed  CAS  Google Scholar 

  46. Tazi J., Bakkour N., Stamm S. 2009. Alternative splicing and disease. Biochim. Biophys. Acta. 1792, 14–26.

    Article  PubMed  CAS  Google Scholar 

  47. da Costa P.J., Menezes J., Romao L. 2017. The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. Int. J. Biochem. Cell Biol. (in press).

    Google Scholar 

  48. Ueda H., Howson J.M., Esposito L., et al. 2003. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 423, 506–511.

    Article  PubMed  CAS  Google Scholar 

  49. Heggarty S., Suppiah V., Silversides J., et al. 2007. CTLA4 gene polymorphisms and multiple sclerosis in Northern Ireland. J. Neuroimmunol. 187, 187–191.

    Article  PubMed  CAS  Google Scholar 

  50. Wang Z., Liu T. 2017. Placental growth factor signaling regulates isoform splicing of vascular endothelial growth factor A in the control of lung cancer cell metastasis. Mol. Cell. Biochem. (in press).

    Google Scholar 

  51. Liu B., Hong S., Tang Z., Yu H., Giam C.Z. 2005. HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. Proc. Natl Acad. Sci. U. S. A. 102, 63–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Schwartz.

Additional information

Original Russian Text © D.E. Demin, A.V. Bogolyubova, D.V. Zlenko, A.N. Uvarova, A.V. Deikin, L.V. Putlyaeva, P.V. Belousov, N.A. Mitkin, K.V. Korneev, E.N. Sviryaeva, I.V. Kulakovskiy, K.A. Tatosyan, D.V. Kuprash, A.M. Schwartz, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 3, pp. 508–518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demin, D.E., Bogolyubova, A.V., Zlenko, D.V. et al. The Novel Short Isoform of Securin Stimulates the Expression of Cyclin D3 and Angiogenesis Factors VEGFA and FGF2, but Does Not Affect the Expression of MYC Transcription Factor. Mol Biol 52, 436–445 (2018). https://doi.org/10.1134/S0026893318030032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318030032

Keywords

Navigation