Molecular Biology

, Volume 52, Issue 3, pp 385–392 | Cite as

Transcription Factor SAP30 Is Involved in the Activation of NETO2 Gene Expression in Clear Cell Renal Cell Carcinoma

  • A. V. Snezhkina
  • K. M. Nyushko
  • A. R. Zaretsky
  • D. A. Shagin
  • A. F. Sadritdinova
  • M. S. Fedorova
  • Z. G. Guvatova
  • I. S. Abramov
  • E. A. Pudova
  • B. Y. Alekseev
  • A. A. Dmitriev
  • A. V. Kudryavtseva
Genomics. Trascriptomics

Abstract

Clear cell renal cell carcinoma (ccRCC) is a common oncourological disease with a high mortality level. The incidence of this type of cancer is constantly increasing, while molecular mechanisms involved in the disease initiation and progression remain far from being fully understood. A problem of the search for novel markers is crucial for improvement of diagnosis and therapy of ccRCC. We have previously found that the disease is characterized by increased expression of the NETO2 gene. In the present study, we showed that isoform 1 (NM_018092.4) makes the main contribution to the upregulation of this gene. Using original CrossHub software, “The Cancer Genome Atlas” (TCGA) project data were analyzed to identify possible mechanisms of NETO2 gene activation in ccRCC. The absence of significant contribution of methylation to the increase of mRNA level of the gene was observed. At the same time, a number of genes encoding transcription factors, which could potentially regulate the expression of NETO2 in ccRCC, were identified. Three such genes (MYCBP, JMY, and SAP30) were selected for the further analysis of their mRNA levels in a set of ccRCC samples with quantitative PCR. We showed a significant increase in mRNA level of one of the examined genes, SAP30, and revealed its positive correlation with NETO2 gene expression. Thus, upregulation of NETO2 gene is first stipulated by the isoform 1 (NM_018092.4), and the probable mechanism of its activation is associated with the increased expression of SAP30 transcription factor.

Keywords

clear cell renal cell carcinoma NETO2 oncogene SAP30 transcription factors qPCR 

Abbreviations

qPCR

quantitative PCR

ccRCC

clear cell renal cell carcinoma

CUB

complement C1r/C1s, Uegf, Bmp1

KAR

kainate receptor

LDLa

low-density lipoprotein, class A

NMDA

ionotrope glutamate receptor

RNA-seq

RNA sequencing

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Siegel R.L., Miller K.D., Jemal A. 2015. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Lopez-Beltran A., Carrasco J.C., Cheng L., et al. 2009. 2009 update on the classification of renal epithelial tumors in adults. Int. J. Urol. 16, 432–443.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheville J.C., Lohse C.M., Zincke H., et al. 2003. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am. J. Surg. Pathol. 27, 612–624.CrossRefPubMedGoogle Scholar
  4. 4.
    Moch H., Gasser T., Amin M.B., et al. 2000. Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: A Swiss experience with 588 tumors. Cancer. 89, 604–614.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen F., Liu X., Cheng Q., et al. 2016. RUNX3 regulates renal cell carcinoma metastasis via targeting miR-6780a-5p/E-cadherin/EMT signaling axis. Oncotarget. 8, 1–15.Google Scholar
  6. 6.
    Loginov V.I., Dmitriev A.A., Senchenko V.N., et al. 2015. Tumor suppressor function of the SEMA3B gene in human lung and renal cancers. PLoS One. 10, e0123369.CrossRefGoogle Scholar
  7. 7.
    Cherkasova E., Malinzak E., Rao S., et al. 2011. Inactivation of the von Hippel–Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene. 30, 4697–4706.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dmitriev A.A., Rudenko E.E., Kudryavtseva A.V., et al. 2014. Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed. Res. Int. 2014, 735292.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Haraldson K., Kashuba V.I., Dmitriev A.A., et al. 2012. LRRC3B gene is frequently epigenetically inactivated in several epithelial malignancies and inhibits cell growth and replication. Biochimie. 94, 1151–1517.CrossRefPubMedGoogle Scholar
  10. 10.
    Kudriavtseva A.V., Anedchenko E.A., Oparina N.Yu., et al. 2009. Expression of FTL and FTH genes encoding ferritin subunits in lung and renal carcinomas. Mol. Biol. (Moscow). 43 (6), 972–981.CrossRefGoogle Scholar
  11. 11.
    Oparina N.Y., Snezhkina A.V., Sadritdinova A.F., et al. 2013. Differential expression of genes that encode glycolysis enzymes in kidney and lung cancer in humans. Russ. J. Genet. 49 (7), 707–716.CrossRefGoogle Scholar
  12. 12.
    Oparina N.Y., Sadritdinova A.F., Snezhkina A.V., et al. 2012. Increase in gene expression is a potential molecular genetic marker in renal and lung cancers. Russ. J. Genet. 48 (5), 506–512.CrossRefGoogle Scholar
  13. 13.
    Stohr H., Berger C., Frohlich S., Weber B.H. 2002. A novel gene encoding a putative transmembrane protein with two extracellular CUB domains and a low-density lipoprotein class A module: Isolation of alternatively spliced isoforms in retina and brain. Gene. 286, 223–231.CrossRefPubMedGoogle Scholar
  14. 14.
    Copits B.A., Robbins J.S., Frausto S., Swanson G.T. 2011. Synaptic targeting and functional modulation of GluK1 kainate receptors by the auxiliary neuropilin and tolloid-like (NETO) proteins. J. Neurosci. 31, 7334–7340.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Michishita M., Ikeda T., Nakashiba T., et al. 2003. A novel gene, Btcl1, encoding CUB and LDLa domains is expressed in restricted areas of mouse brain. Biochem. Biophys. Res. Commun. 306, 680–686.CrossRefPubMedGoogle Scholar
  16. 16.
    Krasnov G.S., Dmitriev A.A., Melnikova N.V., et al. 2016. CrossHub: A tool for multi-way analysis of The Cancer Genome Atlas (TCGA) in the context of gene expression regulation mechanisms. Nucleic Acids Res. 44, e62.CrossRefGoogle Scholar
  17. 17.
    Krasnov G.S., Oparina N.Y., Dmitriev A.A., et al. 2011. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer. Mol. Biol. (Moscow). 45 (2), 211–220.CrossRefGoogle Scholar
  18. 18.
    Fedorova M.S., Kudryavtseva A.V., Lakunina V.A., et al. 2015. Downregulation of OGDHL expression is associated with promoter hypermethylation in colorectal cancer. Mol. Biol. (Moscow). 49 (4), 608–617.CrossRefGoogle Scholar
  19. 19.
    Snezhkina A.V., Krasnov G.S., Lipatova A.V., et al. 2016. The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c-Myc and C/EBPbeta rather than enterotoxigenic Bacteroides fragilis infection. Oxid. Med. Cell. Longevity. 2016, 2353–2360.CrossRefGoogle Scholar
  20. 20.
    Senchenko V.N., Krasnov G.S., Dmitriev A.A., et al. 2011. Differential expression of CHL1 gene during development of major human cancers. PLoS One. 6, e15612.CrossRefGoogle Scholar
  21. 21.
    Melnikova N.V., Dmitriev A.A., Belenikin M.S., et al. 2016. Identification, expression analysis, and target prediction of flax genotroph microRNAs under normal and nutrient stress conditions. Front. Plant Sci. 7, 399.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dmitriev A.A., Kudryavtseva A.V., Krasnov G.S., et al. 2016. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol. 16, 237.CrossRefPubMedGoogle Scholar
  23. 23.
    Calicchio M.L., Collins T., Kozakewich H.P. 2009. Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genomewide transcriptional profiling. Am. J. Pathol. 174, 1638–1649.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kadara H., Fujimoto J., Yoo S.Y., et al. 2014. Transcriptomic architecture of the adjacent airway field cancerization in non-small cell lung cancer. J. Natl. Cancer Inst. 106, dju004.Google Scholar
  25. 25.
    Villa E., Critelli R., Lei B., et al. 2016. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut. 65, 861–869.PubMedGoogle Scholar
  26. 26.
    Hu L., Chen H.Y., Cai J., et al. 2015. Upregulation of NETO2 expression correlates with tumor progression and poor prognosis in colorectal carcinoma. BMC Cancer. 15, 1006.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Clower C.V., Chatterjee D., Wang Z., et al. 2010. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl. Acad. Sci. U. S. A. 107, 1894–1899.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bonomi S., Gallo S., Catillo M., et al. 2013. Oncogenic alternative splicing switches: Role in cancer progression and prospects for therapy. Int. J. Cell. Biol. 2013, 962038.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang G.S., Cooper T.A. 2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761.CrossRefPubMedGoogle Scholar
  30. 30.
    Karni R., de Stanchina E., Lowe S.W., et al. 2007. The gene encoding the splicing factor SF2/ASF is a protooncogene. Nat. Struct. Mol. Biol. 14, 185–193.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Srebrow A., Kornblihtt A.R. 2006. The connection between splicing and cancer. J. Cell. Sci. 119, 2635–2641.CrossRefPubMedGoogle Scholar
  32. 32.
    Mucaki E.J., Ainsworth P., Rogan P.K. 2011. Comprehensive prediction of mRNA splicing effects of BRCA1 and BRCA2 variants. Hum. Mutat. 32, 735–742.CrossRefPubMedGoogle Scholar
  33. 33.
    Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A., et al. 2016. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 7, 44879–44905.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Grzenda A., Lomberk G., Zhang J.S., Urrutia R. 2009. Sin3: Master scaffold and transcriptional corepressor. Biochim. Biophys. Acta. 1789, 443–450.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhang Y., Iratni R., Erdjument-Bromage H., et al. 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 89, 357–364.CrossRefPubMedGoogle Scholar
  36. 36.
    Hassig C.A., Fleischer T.C., Billin A.N., et al. 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 89, 341–347.CrossRefPubMedGoogle Scholar
  37. 37.
    Bansal N., Kadamb R., Mittal S., et al. 2011. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLoS One. 6, e26156.CrossRefGoogle Scholar
  38. 38.
    Binda O., Roy J.S., Branton P.E. 2006. RBP1 family proteins exhibit SUMOylation-dependent transcriptional repression and induce cell growth inhibition reminiscent of senescence. Mol. Cell. Biol. 26, 1917–1931.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Silverstein R.A., Ekwall K. 2005. Sin3: A flexible regulator of global gene expression and genome stability. Curr. Genet. 47, 1–17.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang Y., Sun Z.W., Iratni R., et al. 1998. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell. 1, 1021–1031.CrossRefPubMedGoogle Scholar
  41. 41.
    Lai A., Kennedy B.K., Barbie D.A., et al. 2001. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol. Cell. Biol. 21, 2918–2932.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Suryadinata R., Sadowski M., Steel R., Sarcevic B. 2011. Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30·mSin3·HDAC transcriptional repressor complex. J. Biol. Chem. 286, 5108–5118.CrossRefPubMedGoogle Scholar
  43. 43.
    Hsieh J.J., Zhou S., Chen L., Young D.B., Hayward S.D. 1999. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl. Acad. Sci. U. S. A. 96, 23–28.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huang N.E., Lin C.H., Lin Y.S., Yu W.C. 2003. Modulation of YY1 activity by SAP30. Biochem. Biophys. Res. Commun. 306, 267–275.CrossRefPubMedGoogle Scholar
  45. 45.
    Sichtig N., Korfer N., Steger G. 2007. Papillomavirus binding factor binds to SAP30 and represses transcription via recruitment of the HDAC1 co-repressor complex. Arch. Biochem. Biophys. 467, 67–75.CrossRefPubMedGoogle Scholar
  46. 46.
    De Nadal E., Zapater M., Alepuz P.M., et al. 2004. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature. 427, 370–374.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Snezhkina
    • 1
  • K. M. Nyushko
    • 2
  • A. R. Zaretsky
    • 3
    • 4
  • D. A. Shagin
    • 3
  • A. F. Sadritdinova
    • 1
    • 2
  • M. S. Fedorova
    • 1
  • Z. G. Guvatova
    • 1
  • I. S. Abramov
    • 1
  • E. A. Pudova
    • 1
  • B. Y. Alekseev
    • 2
  • A. A. Dmitriev
    • 1
  • A. V. Kudryavtseva
    • 1
    • 2
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.National Medical Research Radiological CenterMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Pirogov Russian National Research Medical UniversityMoscowRussia
  4. 4.Evrogen Lab LLCMoscowRussia

Personalised recommendations