Skip to main content
Log in

Perhydroxyl Radical (HO2) as Inducer of the Isoprostane Lipid Peroxidation in Mitochondria

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The nonenzymatic isoprostane pathway of lipid peroxidation of polyunsaturated fatty acids results in formation of products, termed isoprostanes, which have very large positional and stereo isomerism, possess various biological activities, produce adducts with proteins, and thus contribute to pathogeneses of the agedependent diseases. However, it was unclear what mechanism drives this type of lipid autoxidation, and why the products have very large isomerism. We propose a mechanism when perhydroxyl radicals (HO2) react with polyunsaturated fatty acids in the hydrophobic milieu of membranes. In the membrane HO2 initiates a chain of reactions with formation first H2O2, which undergoes homolytic fission producing two OH radicals, thus very rapidly abstracting three H atoms from a polyunsaturated fatty acid. As a result, the HO2 molecule is converted to two molecules of water, and the molecule of a polyunsaturated fatty acid loses two double bonds, becomes highly unstable and undergoes peroxidation and random intramolecular re-arrangements causing a very large isomerism of the final products. The extremely high reactivity of 2 with polyunsaturated fatty acids is the cause of very subtle and slow accumulation of damages in the membrane and membrane associated proteins, even though the concentration of 2 relative to superoxide radical may be very low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

DHA:

docosahexaenoic acid

FLA2 :

Ca2+-independent phospholipase A2

Е2-IsoК and D2-IsoК:

isoketals with rings Е2 and D2 correspondingly

IsoLG:

isolevuglandins

IsoTxA2 and IsoTxB2 :

isothromboxanes with ring А2 and В2

IMM:

inner mitochondrial membrane

IPPOL:

isoprostane type lipid peroxidation

IsoP:

isoprostane

LP:

lipid peroxidation

OMM:

outer mitochondrial membrane

PG:

prostaglandin

PUFA:

polyunsaturated fatty acid

ROS:

reactive oxygen species

References

  1. Murphy M.P., Partridge L. 2008. Toward a control theory analysis of aging. Ann. Rev. Biochem. 77, 777–798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sovari A.A. 2016. Cellular and molecular mechanisms of arrhythmia by oxidative stress. Cardiol. Res. Pract. 2016, 9656078. doi 10.1155/2016/9656078

    Article  PubMed  PubMed Central  Google Scholar 

  3. Radi E., Formichi P., Battisti C., Federico A. 2014. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis. 42, (Suppl. 3), S125–S152.

    Article  PubMed  CAS  Google Scholar 

  4. Andreyev A.Y., Kushnareva Y.E., Murphy A.N., Starkov A.A. 2015. Mitochondrial ROS metabolism: 10 years later. Biochemistry (Moscow). 80 (5), 517–531.

    Article  CAS  Google Scholar 

  5. McCord J.M., Fridovich I. 1978. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.

    Google Scholar 

  6. Bielski B.H.J. 1978. Reevaluation of the spectral and kinetic properties of HO2 and free radicals. Photochem. Photobiol. 28, 645–649.

    Article  CAS  Google Scholar 

  7. Bielski B.H., Arudi R.L., Sutherland M.W. 1983. A study of the reactivity of HO2/with unsaturated fatty acids. J. Biol. Chem. 258, 4759–4761.

    PubMed  CAS  Google Scholar 

  8. Murphy M.P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13.

    Article  PubMed  CAS  Google Scholar 

  9. Indo H.P., Yen H.C., Nakanishi I., et al. 2015. A mitochondrial superoxide theory for oxidative stress diseases and aging. J. Clin. Biochem. Nutr. 56, 1–7.

    Article  PubMed  CAS  Google Scholar 

  10. Fridovich S.E., Porter N.A. 1981. Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide. J. Biol. Chem., 256, 260–265.

    PubMed  CAS  Google Scholar 

  11. Halliwell B., Gutteridge J.M. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 218, 1–14.

    Article  Google Scholar 

  12. Halliwell B. 2006. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 97, 1634–1658.

    Article  PubMed  CAS  Google Scholar 

  13. Sala A., Zarini S., Folco G., et al. 1999. Differential metabolism of exogenous and endogenous arachidonic acid in human neutrophils. J. Biol. Chem. 274, 8264–28269.

    Article  Google Scholar 

  14. Aoki T., Narumiya S. 2012. Prostaglandins and chronic inflammation. Trends Pharmacol. Sci. 33, 304–311.

    Article  PubMed  CAS  Google Scholar 

  15. Chwieśko-Minarowska S., Kowal K., Bielecki M., Kowal-Bielecka O. 2012. The role of leukotrienes in the pathogenesis of systemic sclerosis. Folia Histochem. Cytobiol. 50, 180–185.

    Article  PubMed  Google Scholar 

  16. Tootle T.M. 2013. Genetic insights into the in vivo functions of prostaglandin signaling. Int. J. Biochem. Cell Biol. 45, 1629–1632.

    Article  PubMed  CAS  Google Scholar 

  17. Vinik A.I., Nevoret M., Casellini C., Parson H. 2013. Neurovascular function and sudorimetry in health and disease. Curr. Diabetes Rep. 13, 517–532.

    Article  Google Scholar 

  18. Pryor W.A., Stanley J.P., Blair E. 1976. Autoxidation of polyunsaturated fatty acids: 2. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides. Lipids. 11, 370–379. − O2 − O2

    PubMed  CAS  Google Scholar 

  19. Wendelborn D.F., Seibert K., Roberts L.J. 2nd. 1988. Isomeric prostaglandin F2 compounds arising from prostaglandin D2: A family of icosanoids produced in vivo in humans. Proc. Natl. Acad. Sci. U. S. A. 85, 304–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Morrow J.D., Hill K.E., Burk R.F., et al. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. U. S. A. 87, 9383–9387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Morrow J.D., Awad J.A., Boss H.A., et al. 1992. Noncyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc. Natl. Acad. Sci. U. S. A. 89, 10721–10725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Roberts L.J. 2nd., Fessel J.P. 2004. The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem. Phys. Lipids. 128, 173–186.

    Article  PubMed  CAS  Google Scholar 

  23. Brame C.J., Boutaud O., Davies S.S., et al. 2004. Modification of proteins by isoketal-containing oxidized phospholipids. J. Biol. Chem. 279, 13447–13451.

    Article  PubMed  CAS  Google Scholar 

  24. Montuschi P., Barnes P.J., Roberts L.J. 2nd. 2004. Isoprostanes: Markers and mediators of oxidative stress. FASEB J. 18, 1791–1800.

    Article  PubMed  CAS  Google Scholar 

  25. Davies S.S., Roberts L.J. 2nd. 2011. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radical Biol. Med. 50, 559–566.

    Article  CAS  Google Scholar 

  26. Milne G.L., Yin H., Morrow J.D. 2008. Human biochemistry of the isoprostane pathway. J. Biol. Chem. 283, 15533–15537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Musiek E.S., Yin H., Milne G.L., Morrow J.D. 2005. Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids. 40, 987–994.

    Article  PubMed  CAS  Google Scholar 

  28. Yin H., Gao L., Tai H.H., et al. 2007. Urinary prostaglandin F2alpha is generated from the isoprostane pathway and not the cyclooxygenase in humans. J. Biol. Chem. 282, 329–336.

    Article  PubMed  CAS  Google Scholar 

  29. Roberts L.J. 2nd., Milne G.L. 2009. Isoprostanes. J. Lipid Res. 50, Suppl. S219–S223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Roberts L.J. 2nd., Montine T.J., Markesbery W.R., et al. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273, 13605–13612.

    Article  PubMed  CAS  Google Scholar 

  31. Morrow J.D., Awad J.A., Boss H.J., et al. 1992. Noncyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc. Natl. Acad. Sci. U. S. A. 89, 10721–10725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Morrow J.D., Roberts L.J., Daniel V.C. et al. 1998. Comparison of formation of D2/E2-isoprostanes and F2-isoprostanes in vitro and in vivo-effects of oxygen tension and glutathione. Arch. Biochem. Biophys. 353, 160–171.

    Article  PubMed  CAS  Google Scholar 

  33. Morrow J.D., Hill K.E., Burk R.F., et al. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. U. S. A. 87, 9383–9387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Brame C.J., Salomon R.G., Morrow J.D. et al. 1999. Identification of extremely reactive gamma-ketoaldehydes (isolevuglandins) as products of the isoprostane pathway and characterization of their lysyl protein adducts. J. Biol. Chem. 274, 13139–13146.

    Article  PubMed  CAS  Google Scholar 

  35. Gao L., Yin H., Milne G.L., et al. 2006. Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. J. Biol. Chem. 281, 14092–14099.

    Article  PubMed  CAS  Google Scholar 

  36. Repetto M., Semprine J., Boveris A. 2012. Lipid peroxidation: Chemical mechanism, biological implications and analytical determination. In: Lipid Peroxidation, Ed. Catala A. Rijeka, Croatia: InTech, pp. 3–30. doi doi 10.5772/45943

    Google Scholar 

  37. Davies S.S. 2008. Modulation of protein function by isoketals and levuglandins. Subcell. Biochem. 49, 49–70.

    Article  PubMed  Google Scholar 

  38. Beckman J.S., Koppenol W.H. 1996. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 271, C1424–C1437.

    Article  PubMed  CAS  Google Scholar 

  39. Brand M.D. 2016. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biol. Med. 100, 14–31.

    Article  CAS  Google Scholar 

  40. Gebicki J.M., Bielski B.H.J. 1981. Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid. J. Am. Chem. Soc. 103, 7020–7022.

    Article  CAS  Google Scholar 

  41. Pryor W.A., Squadrito G.L. 1995. The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722.

    PubMed  CAS  Google Scholar 

  42. Pryor W.A., Houk K.N., Foote C.S., et al. 2006. Free radical biology and medicine: It’s a gas, man! Am. J. Physiol. 291, R491–R511.

    CAS  Google Scholar 

  43. Pryor W.A. 1986. Oxy-radicals and related species: Their formation, lifetimes and reactions. Ann. Rev. Physiol. 48, 657–667.

    Article  CAS  Google Scholar 

  44. Gutteridge J.M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41, 1819–1828.

    PubMed  CAS  Google Scholar 

  45. Barber J. 1980. Membrane surface charges and potentials in relation to photosynthesis. Biochim. Biophys. Acta. 594, 253–308.

    Article  PubMed  CAS  Google Scholar 

  46. Gus’kova R.R., Ivanov I., Akhobadze A.A., et al. 1984. Permeability of bilayer lipid membranes for superoxide ( ) radicals. Biochim. Biophys. Acta. 778, 579–583.

    Article  PubMed  Google Scholar 

  47. Serowy S., Saparov S.M., Antonenko Y.N., et al. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (1), 1031–1037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wraight C.A. 2006. Chance and design: Proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta. 1757, 886–912.

    Article  PubMed  CAS  Google Scholar 

  49. Ilan Y.A., Czapski G., Meisel D. 2006. The one-electron transfer redox potentials of free radicals: 1. The oxygen/superoxide system. Biochim. Biophys. Acta. 430, 209–224.

    Article  Google Scholar 

  50. Owen M.C., Viskolcz B., Csizmadia L.G. 2011. Quantum chemical analysis of the unfolding of a pentaalanyl 3 (10)-helix initiated by •OH, and. J. Phys. Chem. B. 115, 8014–8023.

    Article  PubMed  CAS  Google Scholar 

  51. Antonenko Y.N., Kovbasnjuk O.N., Yaguzhinsky L.S. 1993. Evidence in favor of the existence of a kinetic barrier for proton transfer from a surface of bilayer phosi− O2 i HO2 i O2 pholipid membrane to bulk water. Biochim. Biophys. Acta. 1150, 45–50.

    Article  PubMed  CAS  Google Scholar 

  52. Heberle J., Riesle J., Thiedemann G., et al. 1994. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 370 (6488), 379–382.

    Article  PubMed  CAS  Google Scholar 

  53. Guckenberger R., Heim M., Cevc G., et al. 1994. Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films. Science. 266 (5190), 1538–1540.

    Article  PubMed  CAS  Google Scholar 

  54. Krasinskaya I.P., Lapin M.V., Yaguzhinsky L.S. 1998. Detection of the local H+ gradients on the internal mitochondrial membrane. FEBS Lett. 440, 223–225.

    Article  PubMed  CAS  Google Scholar 

  55. Cherepanov D.A., Feniouk B.A., Junge W., et al. 2003. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophys. J. 85, 1307–1316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Springer A., Hagen V., Cherepanov D.A. et al. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. U. S. A. 108, 14461–14466.

    Article  PubMed  PubMed Central  Google Scholar 

  57. De Grey A.D. 2002. •HO2: The forgotten radical. DNA Cell Biol. 21, 251–257.

    Article  PubMed  Google Scholar 

  58. McLaughlin S. 1977. Electrostatic potentials at membrane-solution interfaces. Curr. Topics Membr. Transp. 9, 71–144

    Article  CAS  Google Scholar 

  59. Hovius R., Lambrechts H., Nicolay K., et al. 1990. Improved methods to isolate and subfructionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim. Biophys. Acta. 1021, 217–226.

    Article  PubMed  CAS  Google Scholar 

  60. Horvath S.E., Daum G. 2013. Lipids of mitochondria. Progr. Lipid Res. 52, 590–614.

    Article  CAS  Google Scholar 

  61. Mileykovskaya E., Dowhan W. 2009. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta. 1788, 2084–2091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Haines T.H., Dencher N.A. 2002. Cardiolipin: A proton trap for oxidative phosphorylation. FEBS Lett. 528, 35–39.

    Article  PubMed  CAS  Google Scholar 

  63. Adelroth P., Brzezinski P. 2004. Surface-mediated proton-transfer reactions in membrane-bound proteins. Biochim. Biophys. Acta. 1655, 102–115.

    Article  PubMed  CAS  Google Scholar 

  64. Gutman M., Nachliel E. 1995. The dynamics of proton-exchange between bulk and surface groups. Biochim. Biophys. Acta. 1231, 123–138.

    Article  Google Scholar 

  65. Emanuel N.M., Knorre D.G. 1984. Kurs khimicheskoi kinetiki (A Course in Chemical Kinetics), 4th ed. Moscow: Vysshaya Shkola.

    Google Scholar 

  66. Mikheev Yu.A., Zajkov G.E. 2006. Nano-phases and kinetic model of chain reactions of polypropilens with dibenzoyl peroxide. In: Diversity in Chemical Reactions: Pure and Applied Chemistry. Eds. Zajkov G.E., Rakovsky S.K., Schiraldi S.A. New York: Nova Science.

    Google Scholar 

  67. Seal P., Papajak E., Truhlar D.G. 2012. Kinetics of the hydrogen abstraction from carbon-3 of 1-butanol by hydroperoxyl radical: Multi-structural variational transition-state calculations of a reaction with 262 conformations of the transition state. J. Phys. Chem. Let. 2012, 264–271.

    Article  CAS  Google Scholar 

  68. Mendes J., Zhou C.W., Curran H.J. 2013. Theoretical and kinetic study of the hydrogen atom abstraction reactions of esters with radicals. J. Phys. Chem. A. 117, 14006–14018.

    Article  PubMed  CAS  Google Scholar 

  69. Aikens J., Dix T.A. 1991. Perhydroxyl radical (HOO•) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem. 266, 15091–15098.

    PubMed  CAS  Google Scholar 

  70. Aikens J., Dix T.A. 1993. Hydrodioxyl (perhydroxyl), peroxyl, and hydroxyl radical-initiated lipid peroxidation of large unilamellar vesicles (liposomes): Comparative and mechanistic studies. Arch. Biochem. Biophys. 305, 516–525.

    Article  PubMed  CAS  Google Scholar 

  71. Antunes F., Salvador A., Marinho H.S., et al. 1996. Lipid peroxidation in mitochondrial inner membranes: 1. An integrative kinetic model. Free Radical Biol. Med. 21, 917–943.

    Article  CAS  Google Scholar 

  72. Dix T.A., Hess K.M., Medina M.A., et al. 1996. Mechanism of site-selective DNA nicking by the hydrodioxyl (perhydroxyl) radical. Biochemistry. 35, 4578–4583.

    Article  PubMed  CAS  Google Scholar 

  73. Montine T.J., Morrow J.D. 2005. Fatty acid oxidation in the pathogenesis of Alzheimer’s disease. Am. J. Pathol. 166, 1283–12895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Haines T.H. 2009. A new look at Cardiolipin. Biochim. Biophys. Acta. 1788, 1997–2002.

    Article  PubMed  CAS  Google Scholar 

  75. Paradies G., Petrosillo G., Paradies V., et al. 2009. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 45, 643–650.

    Article  PubMed  CAS  Google Scholar 

  76. Paradies G., Petrosillo G., Paradies V., et al. 2011. Mitochondrial dysfunction in brain aging: Role of oxidative stress and cardiolipin. Neurochem. Int. 58, 447–457.

    Article  PubMed  CAS  Google Scholar 

  77. Han X., Yang J., Yang K., et al. 2007. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: A shotgun lipidomics study. Biochemistry. 46, 6417–6428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lee H.J., Mayette J., Rapoport S.I., et al. 2006. Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis. 5, 2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Panov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, A. Perhydroxyl Radical (HO2) as Inducer of the Isoprostane Lipid Peroxidation in Mitochondria. Mol Biol 52, 295–305 (2018). https://doi.org/10.1134/S0026893318020097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318020097

Keywords

Navigation