Skip to main content
Log in

Novel Glycyrrhetinic Acid Derivative Soloxolone Methyl Inhibits the Inflammatory Response and Tumor Growth in vivo

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Due to wide spreading of inflammatory disease and imperfection of available anti-inflammatory drugs, mainly associated with their serious side effects, searching for new anti-inflammatory agents is a pressing problem. Natural triterpenoids and their synthetic analogs are a promising source of new drugs. In this study, we have investigated the anti-inflammatory and antitumor effects in vivo of the glycyrrhetinic acid derivative soloxolone methyl (SM), or methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate. SM was shown to efficiently suppress the development of edema in a mouse model of carrageenan- or histamine- induced acute inflammation. SM also inhibited the tumor growth and reduced the tumor cell count in the ascitic fluid in mice bearing Krebs-2 carcinoma, the development of which is accompanied by an inflammatory process in the surrounding tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

LPS:

lipopolysaccharide

NSAID:

nonsteroidal anti-inflammatory drug

SM:

soloxolone methyl

PBS:

phosphate-buffered saline

COX-2:

cyclooxygenase 2

References

  1. Loeb D.S., Ahlquist D.A., Talley N.J. 1992. Management of gastroduodenopathy associated with use of nonsteroidal anti-inflammatory drugs. Mayo Clin. Proc. 67, 354–364.

    Article  CAS  PubMed  Google Scholar 

  2. Champion G.D., Feng P.H., Azuma T., et al. 1997. NSAID-induce gastrointestinal damage: Epidemiology, risk and prevention, with an evaluation of the role of misoprostol. An Asia-Pacific perspective and consensus. Drugs. 53, 6–19.

    CAS  PubMed  Google Scholar 

  3. Nathan C., Ding A. 2010. Nonresolving inflammation. Cell. 140, 871–882.

    Article  CAS  PubMed  Google Scholar 

  4. Coussens L.M., Werb Z. 2002. Inflammation and cancer. Nature. 420, 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aggarwal B.B., Shishodia S., Sandur S.K., et al. 2006. Inflammation and cancer: How hot is the link? Biochem. Pharmacol. 72, 1605–1621.

    CAS  Google Scholar 

  6. Li J.Y., Cao H.Y., Liu P., et al. 2014. Glycyrrhizic acid in the treatment of liver diseases: Literature review. Biomed. Res. Int. 2014, 872139.

    PubMed  PubMed Central  Google Scholar 

  7. Pompei R., Laconi S., Ingianni A. 2009. Antiviral properties of glycyrrhizic acid and its semisynthetic derivatives. Mini-Rev. Med. Chem. 9, 996–1001.

    Article  CAS  PubMed  Google Scholar 

  8. Roohbakhsh A., Iranshahy M., Iranshahi M. 2016. Glycyrrhetinic acid and its derivatives: Anti-cancer and cancer chemopreventive properties, mechanisms of action and structure-cytotoxic activity relationship. Curr. Med. Chem. 23, 498–517.

    Article  CAS  PubMed  Google Scholar 

  9. Langer D., Czarczynska-Goslinska B., Goslinski T. 2016. Glycyrrhetinic acid and its derivatives in infectious diseases. Curr. Issues Pharm. Med. Sci. 29, 118–123.

    CAS  Google Scholar 

  10. Ming L.J., Yin A.C. 2013. Therapeutic effects of glycyrrhizic acid. Nat. Prod. Commun. 8, 415–418.

    CAS  PubMed  Google Scholar 

  11. Grabowski P.S., Wright P.K., Van’t Hof R.J., et al. 1997. Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis. Br. J. Rheumatol. 36, 651–655.

    Article  CAS  PubMed  Google Scholar 

  12. Lallemand B., Gelbcke M., Dubois J., Prévost M., Jabin I., Kiss R. 2011. Structure–activity relationship analyses of glycyrrhetinic acid derivatives as anticancer agents. Mini-Rev. Med. Chem. 11, 881–887.

    Article  CAS  PubMed  Google Scholar 

  13. Markov A.V., Zenkova M.A., Logashenko E.B. 2017. Modulation of tumour-related signaling pathways by natural pentacyclic triterpenoids and their semisynthetic derivatives. Curr. Med. Chem. 24, 1277–1320.

    Article  CAS  PubMed  Google Scholar 

  14. Liby K.T., Sporn M.B. 2012. Synthetic oleanane triterpenoids: Multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev. 64, 972–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chintharlapalli S., Papineni S., Jutooru I., et al. 2007. Structure-dependent activity of glycyrrhetinic acid derivatives as peroxisome proliferator-activated receptor {gamma} agonists in colon cancer cells. Mol. Cancer Ther. 6, 1588–1598.

    Article  CAS  PubMed  Google Scholar 

  16. Chadalapaka G., Jutooru I., McAlee A., et al. 2008. Structure-dependent inhibition of bladder and pancreatic cancer cell growth by 2-substituted glycyrrhetinic and ursolic acid derivatives. Bioorg. Med. Chem. Lett. 18, 2633–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Logashenko E.B., Salomatina O.V., Markov A.V., et al. 2011. Synthesis and pro-apoptotic activity of novel glycyrrhetinic acid derivatives. ChemBioChem. 12, 784–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Popadyuk I.I., Markov A.V., Salomatina O.V., et al. 2015. Synthesis and biological activity of novel deoxycholic acid derivatives. Bioorg. Med. Chem. 23, 5022–5034.

    Article  CAS  PubMed  Google Scholar 

  19. Guzik T.J., Korbut R., Adamek-Guzik T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469–487.

    CAS  PubMed  Google Scholar 

  20. Salomatina O.V., Markov A.V., Logashenko E.B., et al. 2014. Synthesis of novel 2-cyano substituted glycyrrhetinic acid derivatives as inhibitors of cancer cells growth and NO production in LPS-activated J-774 cells. Bioorg. Med. Chem. 22, 585–593.

    Article  CAS  PubMed  Google Scholar 

  21. Morris C.J. 2003. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 225, 115–121.

    PubMed  Google Scholar 

  22. Gepdiremen A., Mshvildadze V., Suleyman H., et al. 2004. Acute and chronic antiinflammatory effects of Hedera colchica in rats. J. Ethnopharmacol. 94, 191–195.

    Article  PubMed  Google Scholar 

  23. Perianayagam J.B., Sharma S.K., Pillai K.K. 2006. Anti-inflammatory activity of Trichodesma indicum root extract in experimental animals. J. Ethnopharmacol. 104, 410–414.

    Article  PubMed  Google Scholar 

  24. Tubaro A., Dri P., Delbello G., et al. 1986. The croton oil ear test revisited. Agents Actions. 17, 347–349.

    Article  CAS  PubMed  Google Scholar 

  25. Salvemini D., Wang Z.Q., Wyatt P.S., et al. 1996. Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br. J. Pharmacol. 118, 829–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Radomski M.W., Palmer R.M., Moncada S. 1990. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Natl. Acad. Sci. U. S. A. 87, 5193–5197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee Y.M., Hirota S., Jippo-Kanemoto T., et al. 1996. Inhibition of histamine synthesis by glycyrrhetinic acid in mast cells cocultured with Swiss 3T3 fibroblasts. Int. Arch. Allergy Immunol. 110, 272–277.

    Article  CAS  PubMed  Google Scholar 

  28. Imanishi N., Kawai H., Hayashi Y., et al. 1989. Effects of glycyrrhizin and glycyrrhetinic acid on dexamethasone-induced changes in histamine synthesis of mouse mastocytoma P-815 cells and in histamine release from rat peritoneal mast cells. Biochem. Pharmacol. 38, 2521–2526.

    Article  CAS  PubMed  Google Scholar 

  29. Liu J. 1995. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49, 57–68.

    Article  CAS  PubMed  Google Scholar 

  30. Lee J.Y., Moon H., Kim C.J. 2010. Effects of hydroxy pentacyclic triterpene acids from Forsythia viridissima on asthmatic responses to ovalbumin challenge in conscious guinea pigs. Biol. Pharm. Bull. 33, 230–237.

    Article  CAS  PubMed  Google Scholar 

  31. Hu L.N, Fang X.Y., Liu H.L., et al. 2013. Protective effects of 18ß-glycyrrhetinic acid on LPS-induced injury in intestinal epithelial cells. Chin. J. Nat. Med. 11, 24–29.

    Article  CAS  Google Scholar 

  32. Luo L., Jin Y., Kim I.D., Lee J.K. 2013. Glycyrrhizin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Exp. Neurobiol. 22, 107–115.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deeb D., Gao X., Jiang H., et al. 2009. Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells by independently targeting pro-survival Akt and mTOR. Prostate. 69, 851–860.

    Article  CAS  PubMed  Google Scholar 

  34. Fukumitsu S., Villareal M.O., Fujitsuka T., et al. 2016. Anti-inflammatory and anti-arthritic effects of pentacyclic triterpenoids maslinic acid through NF-kB inactivation. Mol. Nutr. Food Res. 60, 399–409.

    Article  CAS  PubMed  Google Scholar 

  35. Kulkarni S.K., Mehta A.K., Kunchandy J. 1986. Antiinflammatory actions of clonidine, guanfacine and B HT 920 against various inflammagen-induced acute paw oedema in rats. Arch. Int. Pharmacodyn. Ther. 279, 324–334.

    CAS  PubMed  Google Scholar 

  36. Nagy J.A., Benjamin L., Zeng H., et al. 2008. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 11, 109–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rozenberg I., Sluka S.H., Rohrer L., et al. 2010. Histamine H1 receptor promotes atherosclerotic lesion formation by increase vascular permeability for low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  38. Yong Y.K., Zakaria Z.A., Kadir A.A., et al. 2013. Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Complementary Altern. Med. 13,32.

    Article  Google Scholar 

  39. Grivennikov S.I., Greten F.R., Karin M. 2010. Immunity, inflammation, and cancer. Cell. 140, 883–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parsons D.F., Marko M., Braun S.J., et al. 1982. Ascites tumor invasion of mouse peritoneum studied by high-voltage electron microscope stereoscopy. Cancer Res. 42, 4574–4583.

    CAS  PubMed  Google Scholar 

  41. Parsons D.F., Marko M., Wansor K.J. 1983. Inflammation with restricted lysosomal proteolysis during early ascites carcinoma invasion of mouse parietal peritoneum. A medium and high-voltage electron microscopic and cytochemical study. Tissue Cell. 15, 499–507.

    CAS  PubMed  Google Scholar 

  42. Auletta J.J., Alabran J.L., Kim B.G., et al. 2010. The synthetic triterpenoid, CDDO-Me, modulates the proinflammatory response to in vivo lipopolysaccharide challenge. J. Interferon Cytokine Res. 30, 497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen T., Mou Y., Tan J., et al. 2015. The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol. 25, 55–64.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y.Y., Yang Y.X., Zhao R., et al. 2015. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells. Drug Des., Dev. Ther. 9, 993–1026.

    CAS  Google Scholar 

  45. To C., Kulkarni S., Pawson T., et al. 2008. The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-imidazolide alters transforming growth factor beta-dependent signaling and cell migration by affecting the cytoskeleton and the polarity complex. J. Biol. Chem. 283, 11700–11713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sogno I., Vannini N., Lorusso G., et al. 2009. Antiangiogenic activity of a novel class of chemopreventive compounds: Oleanic acid terpenoids. Recent Results Cancer Res. 181, 209–212.

    Article  CAS  PubMed  Google Scholar 

  47. Ball M.S., Shipman E.P., Kim H., et al. 2016. CDDOMe redirects activation of breast tumor associated macrophages. PLoS One. 11, e0149600.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rayburn E.R., Ezell S.J., Zhang R. 2009. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol. 1, 29–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markov.

Additional information

Original Russian Text © A.V. Markov, A.V. Sen’kova, M.A. Zenkova, E.B. Logashenko, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 2, pp. 306–313.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A.V., Sen’kova, A.V., Zenkova, M.A. et al. Novel Glycyrrhetinic Acid Derivative Soloxolone Methyl Inhibits the Inflammatory Response and Tumor Growth in vivo. Mol Biol 52, 262–268 (2018). https://doi.org/10.1134/S0026893318020073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318020073

Keywords

Navigation