Advertisement

Molecular Biology

, Volume 52, Issue 3, pp 478–487 | Cite as

Determination of Amino Acid Residues Responsible for Specific Interaction of Protein Kinases with Small Molecule Inhibitors

  • D. A. Karasev
  • A. V. Veselovsky
  • A. A. Lagunin
  • D. A. Filimonov
  • B. N. Sobolev
Bioinformatics

Abstract

Identifying amino acid positions that determine the specific interaction of proteins with small molecule ligands, is required for search of pharmaceutical targets, drug design, and solution of other biotechnology problems. We studied applicability of an original method SPrOS (specificity projection on sequence) developed to recognize functionally significant positions in amino acid sequences. The method allows residues specific to functional subgroups to be determined within the protein family based on their local surroundings in amino acid sequences. The efficiency of the method has been estimated on the protein kinase family. The residues associated with the protein specificity to inhibitors have been predicted. The results have been verified using 3D structures of protein–ligand complexes. Three small molecule inhibitors have been tested. Residues predicted with SPrOS either in contacted the inhibitor or influenced the conformation of the ligand–binding area. Excluding close homologues from the studied set makes it possible to decrease the number of difficult to interpret positions. The expediency of this procedure was determined by the relationship between an inhibitory spectrum and phylogenic partition. Thus, the method efficiency has been confirmed by matching the prediction results with the protein 3D structures.

Keywords

protein kinases small molecule ligands of proteins protein kinase inhibitors specific amino acid residues local sequence similarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hanes M.S., Reynolds K.A., McNamara C., et al. 2011. Specificity and cooperativity at β-lactamase position 104 in TEM-1/BLIP and SHV-1/BLIP interactions. Proteins. 79, 1267–1276.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Suplatov D., Voevodin V., Švedas V. 2015. Robust enzyme design: Bioinformatics tools for improved protein stability. Biotechnol. J. 10, 344–355.CrossRefPubMedGoogle Scholar
  3. 3.
    Bywater R.P. 2005. Location and nature of the residues important for ligand recognition in G-protein coupled receptors. J. Mol. Recognit. 18, 60–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Henrich S., Salo-Ahen O.M., Huang B., et al. 2010. Computational approaches to identifying and characterizing protein binding sites for ligand design. J. Mol. Recognit. 23, 209–219.PubMedGoogle Scholar
  5. 5.
    Cahill K.B., Quade J.H., Carleton K.L., et al. 2012. Identification of amino acid residues responsible for the selectivity of tadalafil binding to two closely related phosphodiesterases, PDE5 and PDE6. J. Biol. Chem. 287, 41406–41416.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zharkova M.S., Sobolev B.N., Oparina N.Yu., et al. 2013. Prediction of amino acid residues participated in substrate recognition by cytochrome P450 subfamilies with broad substrate specificity. J. Mol. Recognit. 26, 86–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Bharatham K., Zhang Z.H., Mihalek I. 2011. Determinants, discriminants, conserved residues: A heuristic approach to detection of functional divergence in protein families. PLoS One. 6, 24382.CrossRefGoogle Scholar
  8. 8.
    Mirny L.A., Gelfand M.S. 2002. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. J. Mol. Biol. 321, 7–20.CrossRefPubMedGoogle Scholar
  9. 9.
    del Sol A., Pazos F., Valencia A. 2003. Automatic methods for predicting functionally important residues. J. Mol. Biol. 326, 1289–1302.CrossRefPubMedGoogle Scholar
  10. 10.
    Kalinina O.V., Russell R.B., Rakhmaninova A.B., Gelfand M.S. 2007. Computational method for predicting protein functional sites with the use of specificity determinants. Mol. Biol. (Moscow). 41 (1), 137–147.CrossRefGoogle Scholar
  11. 11.
    Suplatov D., Shalaeva D., Kirilin E., Arzhanik V., Švedas V. 2014. Bioinformatic analysis of protein families for identification of variable amino acid residues responsible for functional diversity. J. Biomol. Struct. Dyn. 32, 75–87.CrossRefPubMedGoogle Scholar
  12. 12.
    Gu X., Zou Y., Su Z. et al. 2013. An update of DIVERGE software for functional divergence analysis of protein family. Mol. Biol. Evol. 30, 1713–1719.CrossRefPubMedGoogle Scholar
  13. 13.
    Wilkins A., Erdin S., Lua R., Lichtarge O. 2012. Evolutionary trace for prediction and redesign of protein functional sites. Methods Mol. Biol. 819, 29–42.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Borodina Y., Lisitsa A., Poroikov V. et al. 2003. If there exists correspondence between similarity of substrates and protein sequences in cytochrome p450 superfamily? Nova Acta Leopold. 87, 47–55.Google Scholar
  15. 15.
    Hert J., Keiser M.J., Irwin J.J., et al. 2008. Quantifying the relationships among drug classes. J. Chem. Inf. Model. 48, 755–765.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mazin P.V., Gelfand M.S., Mironov A.A. et al. 2010. An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies. Algorithms Mol. Biol. 5, 29.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hannenhalli S.S., Russell R.B. 2000. Analysis and prediction of functional sub-types from protein sequence alignments. J. Mol. Biol. 303, 61–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Leslie C.S., Eskin E., Cohen A., et al. 2004. Mismatch string kernels for discriminative protein classification. Bioinformatics. 20, 467–476.CrossRefPubMedGoogle Scholar
  19. 19.
    Kuksa P.P. 2013. Biological sequence classification with multivariate string kernels. IEEE/ACM Trans. Comput. Biol. Bioinf. 10, 1201–1210.CrossRefGoogle Scholar
  20. 20.
    Palme J, Hochreiter S, Bodenhofer U. 2015. KeBABS: An R package for kernel-based analysis of biological sequences. Bioinformatics. 31, 2574–2576.CrossRefPubMedGoogle Scholar
  21. 21.
    Eckart K., Jahn O., Radulovic J. et al. 2001. A single amino acid serves as an affinity switch between the receptor and the binding protein of corticotropinreleasing factor: Implications for the design of agonists and antagonists. Proc. Natl. Acad. Sci. U. S. A. 98, 11142–1117.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fernandez-Ballester G., Blanes-Mira C., Serrano L. 2004. The tryptophan switch: Changing ligand-binding specificity from type I to type II in SH3 domains. J. Mol. Biol. 335, 619–629.CrossRefPubMedGoogle Scholar
  23. 23.
    Tsuda T., Asami M., Koguchi Y., Kojima S. 2014. Single mutation alters the substrate specificity of L-amino acid ligase. Biochemistry. 53, 2650–2660.CrossRefPubMedGoogle Scholar
  24. 24.
    Yuan X., Yin P., Hao Q. et al. 2010. Single amino acid alteration between valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. J. Biol. Chem. 285, 28953–28958.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Karasev D.A., Veselovsky A.V., Oparina N.Y., et al. 2016. Prediction of amino acid positions specific for functional groups in a protein family based on local sequence similarity. J. Mol. Recognit. 29, 159–169.CrossRefPubMedGoogle Scholar
  26. 26.
    Manning G., Whyte D.B., Martinez R., et al. 2002. The protein kinase complement of the human genome. Science. 298, 1912–1934.CrossRefPubMedGoogle Scholar
  27. 27.
    Horbach T., Götz C., Kietzmann T., et al. 2015. Protein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer. Front. Pharmacol. 6, 3.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Roskoski R., Jr. 2015. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res. 100, 1–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhukova Yu.N., Alekseeva M.G., Zakharevich N.V., et al. 2011. Pim family of protein kinases: Structure, functions and roles in hematopoietic malignancies. Mol. Biol. (Moscow). 45 (5), 695–703.CrossRefGoogle Scholar
  30. 30.
    Lupardus P.J., Ultsch M., Wallweber H. et al. 2014. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc. Natl. Acad. Sci. U. S. A. 111, 8025–8030.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roskoski R. 2016. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 103, 26–48.CrossRefPubMedGoogle Scholar
  32. 32.
    Davis M.I., Hunt J.P., Herrgard S., et al. 2011. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1046–1051.CrossRefPubMedGoogle Scholar
  33. 33.
    Karaman M.W., Herrgard S., Treiber D.K. et al. 2008. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132.CrossRefPubMedGoogle Scholar
  34. 34.
    Caffrey D.R., Lunney E.A., Moshinsky D.J. 2008. Prediction of specificity-determining residues for smallmolecule kinase inhibitors. BMC Bioinf. 9, 491.CrossRefGoogle Scholar
  35. 35.
    Cao R., Wang Y. 2016. Predicting molecular targets for small-molecule drugs with a ligand-based interaction fingerprint approach. Chem. Med. Chem. 11, 1352–1361.CrossRefPubMedGoogle Scholar
  36. 36.
    Bosc N., Wroblowski B., Aci-Sèche S. et al. 2015. A proteometric analysis of human kinome: Insight into discriminant conformation-dependent residues. ACS Chem. Biol. 10, 2827–2840.CrossRefPubMedGoogle Scholar
  37. 37.
    Joshi T., Xu D. 2007. Quantitative assessment of relationship between sequence similarity and function similarity. BMC Genomics. 8, 222.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Henikoff S., Henikoff J.G. 1994. Position-based sequence weights. J. Mol. Biol. 243, 574–578.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. A. Karasev
    • 1
    • 2
  • A. V. Veselovsky
    • 1
  • A. A. Lagunin
    • 1
    • 2
  • D. A. Filimonov
    • 1
  • B. N. Sobolev
    • 1
  1. 1.Institute of Biomedical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations