Skip to main content
Log in

Role of the Nucleolus in Rearrangements of the IGH Locus

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review summarizes the results from a series of studies focusing on the role that the nucleolus plays in maturation of the IGH locus and the choice of its partner genes in leukemia-associated translocations. The role of nuclear compartmentalization and nuclear localization of translocated oncogenes in ectopic activation of their transcription is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulianov S.V., Gavrilov A.A., Razin S.V. 2015. Nuclear compartments, genome folding, and enhancer-promoter communication. Int. Rev. Cell. Mol. Biol. 315, 183–244.

    Article  PubMed  Google Scholar 

  2. Meldi L., Brickner J.H. 2011. Compartmentalization of the nucleus. Trends Cell. Biol. 21 (12), 701–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spector D.L., Lamond A.I. 2011. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3 (2).

    Google Scholar 

  4. Bernardi R., Pandolfi P.P. 2007. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell. Biol. 8 (12), 1006–1016.

    Article  CAS  PubMed  Google Scholar 

  5. Nizami Z.F., Deryusheva S., Gall J.G. 2010. Cajal bodies and histone locus bodies in Drosophila and Xenopus. Cold Spring Harb. Symp. Quant. Biol. 75, 313–320.

    Article  CAS  PubMed  Google Scholar 

  6. Pirrotta V., Li H.B. 2012. A view of nuclear Polycomb bodies. Curr. Opin. Genet. Dev. 22 (2), 101–109.

    Article  CAS  PubMed  Google Scholar 

  7. Labrador M., Corces V.G. 2002. Setting the boundaries of chromatin domains and nuclear organization. Cell. 111 (2), 151–154.

    Article  CAS  PubMed  Google Scholar 

  8. Faro-Trindade I., Cook P.R. 2006. Transcription factories: Structures conserved during differentiation and evolution. Biochem. Soc. Trans. 34 (6), 1133–1137.

    Article  CAS  PubMed  Google Scholar 

  9. Hozak P., Cook P.R. 1994. Replication factories. Trends Cell. Biol. 4 (2), 48–52.

    Article  CAS  PubMed  Google Scholar 

  10. Solovei I., Thanisch K., Feodorova Y. 2016. How to rule the nucleus: Divide et impera. Curr. Opin. Cell. Biol. 40, 47–59.

    Article  CAS  PubMed  Google Scholar 

  11. Sutton E. 1940. The structure of salivary gland chromosomes of Drosophila melanogaster in exchanges between euchromatin and heterochromatin. Genetics. 25 (5), 534–540.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Croft J.A., Bridger J.M., Boyle S., et al. 1999. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145 (6), 1119–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schardin M., Cremer T., Hager H.D., et al. 1985. Specific staining of human chromosomes in Chinese hamster–man hybrid cell lines demonstrates interphase chromosome territories. Hum. Genet. 71 (4), 281–287.

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen H.Q., Bosco G. 2015. Gene positioning effects on expression in eukaryotes. Annu. Rev. Genet. 49, 627–646.

    Article  CAS  PubMed  Google Scholar 

  15. Leotta, C.G., Federico C., Brundo M.V., et al. 2014. HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLOS ONE. 9 (8), e105481.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khanna N., Hu Y., Belmont A.S. 2014. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24 (10), 1138–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee H.Y., Johnson K.D., Boyer M.E., et al. 2011. Relocalizing genetic loci into specific subnuclear neighborhoods. J. Biol. Chem. 286 (21), 18834–18844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Szczerbal I., Foster H.A., Bridger J.M. 2009. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma. 118 (5), 647–663.

    Article  CAS  PubMed  Google Scholar 

  19. Chambeyron S., Bickmore W.A. 2004. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18 (10), 1119–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saad H., Cobb J.A. 2016. A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture. Biochem. Cell Biol. 94 (5), 433–440.

    Article  CAS  PubMed  Google Scholar 

  21. Krawczyk P.M., Borovski T., Stap J., et al. 2012. Chromatin mobility is increased at sites of DNA doublestrand breaks. J. Cell Sci. 125 (9), 2127–2133.

    Article  CAS  PubMed  Google Scholar 

  22. Lemaitre C., Bickmore W.A. 2015. Chromatin at the nuclear periphery and the regulation of genome functions. Histochem. Cell Biol. 144 (2), 111–122.

    Article  CAS  PubMed  Google Scholar 

  23. Kulashreshtha M., Mehta I.S., Kumar P., et al. 2016. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by Upsilon-H2AX signaling. Nucleic Acids Res. 44 (17): p. 8272–8291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schatz D.G., Ji Y. 2011. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11 (4), 251–263.

    Article  CAS  PubMed  Google Scholar 

  25. Di Noia J.M., Neuberger M.S. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22.

    Article  PubMed  Google Scholar 

  26. Stavnezer J., Schrader C.E. 2014. IgH chain class switch recombination: Mechanism and regulation. J. Immunol. 193 (11), 5370–5378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stavnezer J., Guikema J.E., Schrader C.E. 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ichii M., Oritani K., Kanakura Y. 2014. Early B lymphocyte development: Similarities and differences in human and mouse. World J. Stem Cells. 6 (4), 421–431.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y., McCord R.P., Ho Y.J., et al. 2012. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 148(5), 908–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Misteli T., Soutoglou E. 2009. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10 (4), 243–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iarovaia O.V., Rubtsov M.A., Ioudinkova E.S., et al. 2014. Dynamics of double strand breaks and chromosomal translocations. Mol. Cancer. 13,249.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rubtsov M.A., Terekhov S.M., Razin S.V., Iarovaia O.V. 2008. Repositioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II. J. Cell. Biochem. 104 (2), 692–699.

    Article  CAS  PubMed  Google Scholar 

  33. Kosak S.T., Skok J.A., Medina K.L., et al. 2002. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 296 (5565), 158–162.

    Article  CAS  PubMed  Google Scholar 

  34. Rother M.B., Palstra R.J., Jhunjhunwala S., et al. 2016. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci. Nucleic Acids Res. 44 (1), 175–186.

    Article  PubMed  Google Scholar 

  35. Yang Q., Riblet R., Schildkraut C.L. 2005. Sites that direct nuclear compartmentalization are near the 5' end of the mouse immunoglobulin heavy-chain locus. Mol. Cell Biol. 25 (14), 6021–6030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Skok J.A., Brown K.E., Azuara V., et al. 2001. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2 (9), 848–854.

    Article  CAS  PubMed  Google Scholar 

  37. Nemeth A., Langst G. 2011. Genome organization in and around the nucleolus. Trends Genet. 27 (4), 149–156.

    Article  CAS  PubMed  Google Scholar 

  38. Nemeth A., Conesa A., Santoyo-Lopez J., et al. 2010. Initial genomics of the human nucleolus. PLoS Genet. 6 (3), e1000889.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zullo J.M., Demarco I.A., Piqué-Regi R., et al. 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell. 149 (7), 1474–1487.

    Article  CAS  PubMed  Google Scholar 

  40. Razin S.V., Petrov A., Hair A., Vassetzky Y.S. 2004. Chromatin domains and territories: Flexibly rigid. Crit. Rev. Eukaryot. Gene Expr. 14 (1–2), 79–88.

    Article  PubMed  Google Scholar 

  41. Splinter E., de Wit E., Nora E.P., et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25 (13), 1371–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Koningsbruggen S., Gierlinski M., Schofield P., et al. 2010. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell. 21 (21), 3735–3748.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Allinne J., Pichugin A., Iarovaia O., et al. 2014. Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma. Blood. 123 (13), 2044–2053.

    Article  CAS  PubMed  Google Scholar 

  44. Boulon S., Westman B.J., Hutten S., et al. 2010. The nucleolus under stress. Mol. Cell. 40 (2), 216–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takada H., Kurisaki A. 2015. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell. Mol. Life Sci. 72 (21), 4015–4025.

    Article  CAS  PubMed  Google Scholar 

  46. Carmo-Fonseca M., Mendes-Soares L., Campos I. 2000. To be or not to be in the nucleolus. Nat. Cell Biol. 2 (6), 107–112.

    Article  Google Scholar 

  47. Antoniali G., Lirussi L., Poletto M., Tell G. 2014. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid. Redox Signal. 20 (4), 621–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greco A. 2009. Involvement of the nucleolus in replication of human viruses. Rev. Med. Virol. 19 (4), 201–214.

    Article  CAS  PubMed  Google Scholar 

  49. Arcangeletti M.C., Rodighiero I., De Conto F., et al. 2009. Modulatory effect of rRNA synthesis and ppUL83 nucleolar compartmentalization on human cytomegalovirus gene expression in vitro. J. Cell. Biochem. 108 (2), 415–423.

    Article  CAS  PubMed  Google Scholar 

  50. Leung A.K., Trinkle-Mulcahy L., Wah Lam Y., et al. 2006. NOPdb: Nucleolar Proteome Database. Nucleic Acids Res. 34 (Database issue), D218–D220.

    Article  CAS  PubMed  Google Scholar 

  51. Bensaddek D., Nicolas A., Lamond A.I. 2016. Quantitative proteomic analysis of the human nucleolus. Meth. Mol. Biol. 1455, 249–262.

    Article  CAS  Google Scholar 

  52. Spanopoulou E., Cortes P., Shih C., et al. 1995. Localization, interaction, and RNA binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity. 3 (6), 715–726.

    Article  CAS  PubMed  Google Scholar 

  53. Hu Y., Ericsson I., Torseth K., et al. 2013. A combined nuclear and nucleolar localization motif in activationinduced cytidine deaminase (AID) controls immunoglobulin class switching. J. Mol. Biol. 425 (2), 424–443.

    Article  CAS  PubMed  Google Scholar 

  54. Laffleur B., Denis-Lagache N., Péron S., et al. 2014. AID-induced remodeling of immunoglobulin genes and B cell fate. Oncotarget. 5 (5), 1118–1131.

    Article  PubMed  Google Scholar 

  55. Cortizas E.M., Zahn A., Hajjar M.E., et al. 2013. Alternative end-joining and classical nonhomologous endjoining pathways repair different types of double-strand breaks during class-switch recombination. J. Immunol. 191 (11), 5751–5763.

    Article  CAS  PubMed  Google Scholar 

  56. Poltoratsky V., Heacock M., Kissling G.E., et al. 2010. Mutagenesis dependent upon the combination of activation-induced deaminase expression and a doublestrand break. Mol. Immunol. 48 (1–3), 164–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Teng G., Schatz D.G. 2015. Regulation and evolution of the RAG recombinase. Adv. Immunol. 128, 1–39.

    Article  PubMed  Google Scholar 

  58. Roth D.B. 2014. V(D)J recombination: Mechanism, errors, and fidelity. Microbiol. Spectr. 2 (6).

    Google Scholar 

  59. Gazumyan A., Bothmer A., Klein I.A., et al. 2012. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv. Cancer Res. 113, 167–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robbiani D.F., Bunting S., Feldhahn N., et al. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell. 36 (4), 631–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Faili A., Aoufouchi S., Flatter E., et al. 2002. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature. 419 (6910), 944–947.

    Article  CAS  PubMed  Google Scholar 

  62. Le Gallou S., Caron G., Delaloy C., et al. 2012. IL-2 requirement for human plasma cell generation: Coupling differentiation and proliferation by enhancing MAPK-ERK signaling. J. Immunol. 189 (1), 161–173.

    Article  PubMed  Google Scholar 

  63. Delpy L., Sirac C., Le Morvan C., et al. 2004. Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. J. Immunol. 173 (3), 1842–1848.

    Article  CAS  PubMed  Google Scholar 

  64. Okazaki I.M., Kotani A., Honjo T. 2007. Role of AID in tumorigenesis. Adv. Immunol. 94, 245–273.

    Article  CAS  PubMed  Google Scholar 

  65. Klein G. 1983. Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell. 32 (2), 311–315.

    Article  CAS  PubMed  Google Scholar 

  66. Decaudin D. 2002. Mantle cell lymphoma: A biological and therapeutic paradigm. Leuk. Lymphoma. 43 (4), 773–781.

    Article  PubMed  Google Scholar 

  67. Rocha P.P., Skok J.A. 2013. The origin of recurrent translocations in recombining lymphocytes: A balance between break frequency and nuclear proximity. Curr. Opin. Cell Biol. 25 (3), 365–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Parada L.A., McQueen P.G., Misteli T. 2004. Tissuespecific spatial organization of genomes. Genome Biol. 5 (7), R44.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Roix J.J., McQueen P.G., Munson P.J., et al. 2003. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 34 (3), 287–291.

    Article  CAS  PubMed  Google Scholar 

  70. Osborne C.S., Chakalova L., Mitchell J.A., et al. 2007. Myc dynamically and preferentially relocates to a tran scription factory occupied by Igh. PLoS Biol. 5 (8), e192.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hu Q., Kwon Y.S., Nunez E., et al. 2008. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl. Acad. Sci. U. S. A. 105 (49), 19199–19204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Geli V., Lisby M. 2015. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex. Bioessays. 37 (12), 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  73. Lisby M., Mortensen U.H., Rothstein R. 2003. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5 (6), 572–577.

    Article  CAS  PubMed  Google Scholar 

  74. Sklyar I., Iarovaia O.V., Gavrilov A.A., et al. 2016. Distinct patterns of colocalization of the CCND1 and CMYC genes with their potential translocation partner IGH at successive stages of B-cell differentiation. J. Cell. Biochem. 117 (7), 1506–1510.

    Article  CAS  PubMed  Google Scholar 

  75. Strongin D.E., Groudine M., Politz J.C. 2014. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus. 5 (5), 474–481.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jares P., Colomer D., Campo E. 2012. Molecular pathogenesis of mantle cell lymphoma. J. Clin. Invest. 122 (10), 3416–3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bellan C., Lazzi S., Hummel M., et al. 2005. Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas. Blood. 106 (3), 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  78. Baptista M.J., Calpe E., Fernandez E., et al. 2014. Analysis of the IGHV region in Burkitt’s lymphomas supports a germinal center origin and a role for superantigens in lymphomagenesis. Leuk. Res. 38 (4), 509–515.

    Article  CAS  PubMed  Google Scholar 

  79. Robbiani D.F., Bothmer A., Callen E., et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 135 (6), 1028–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kinoshita K., Nonaka T. 2006. The dark side of activation-induced cytidine deaminase: Relationship with leukemia and beyond. Int. J. Hematol. 83 (3), 201–207.

    Article  CAS  PubMed  Google Scholar 

  81. Brys A., Maizels N. 1994. LR1 regulates c-myc transcription in B-cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 91 (11), 4915–4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huddleson J.P., Ahmad N., Lingrel J.B. 2006. Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin. J. Biol. Chem. 281 (22), 15121–15128.

    Article  CAS  PubMed  Google Scholar 

  83. Grinstein E., Du Y., Santourlidis S., et al. 2007. Nucleolin regulates gene expression in CD34-positive hematopoietic cells. J. Biol. Chem. 282 (17), 12439–12449.

    Article  CAS  PubMed  Google Scholar 

  84. Chen Y.L., Liu C.D., Cheng C.P., et al. 2014. Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc. Natl. Acad. Sci. U. S. A. 111 (1), 243–248.

    Article  CAS  PubMed  Google Scholar 

  85. Hanakahi L.A., Maizels N. 2000. Transcriptional activation by LR1 at the Emu enhancer and switch region sites. Nucleic Acids Res. 28 (14), 2651–2657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hanakahi L.A., Dempsey L.A., Li M.J., et al. 1997. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proc. Natl. Acad. Sci. U. S. A. 94 (8), 3605–3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Iarovaia.

Additional information

Original Russian Text © O.V. Iarovaia, E.S. Ioudinkova, S.V. Razin, Y.S. Vassetzky, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 2, pp. 210–219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iarovaia, O.V., Ioudinkova, E.S., Razin, S.V. et al. Role of the Nucleolus in Rearrangements of the IGH Locus. Mol Biol 52, 182–189 (2018). https://doi.org/10.1134/S0026893317050211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317050211

Keywords

Navigation