Molecular Biology

, Volume 52, Issue 2, pp 232–236 | Cite as

Increase in Bacterial Resistance to Antibiotics after Cancer Therapy with Platinum-Based Drugs

  • V. A. Chistyakov
  • E. V. Prazdnova
  • M. S. Mazanko
  • M. N. Churilov
  • V. K. Chmyhalo
Molecular Cell Biology
  • 2 Downloads

Abstract

The use of platinum-based anticancer drugs is limited by both their side effects and their effect on normal microflora’s metagenome. Drugs that possess mutagenic and genotoxic properties may cause mutations in microbial genomes that contribute to the emergence of resistance to antimicrobial preparations and the development of complications after chemotherapy. The effects of cisplatin and oxaliplatin on microorganisms were studied using bacterial biosensors—E. coli strains MG1655 pKatG-lux, which reacts to the generation of hydrogen peroxide; MG1655 pSoxS-lux, which reacts to the superoxide anion radical; and the MG1655 pColD-lux strain, which detects DNA damage. The biosensor tests demonstrated high levels of genotoxicity for both drugs and some differences in the spectrum of reactive oxygen species generated. Ascorbate reduced genotoxicity of cisplatin by 41%. Nonlethal doses of cisplatin induced a three- to sevenfold increase in the frequency of the mutations that confer the resistance of E. coli to rifampicin and ciprofloxacin. Ascorbate also reduced frequency of the mutations by 65%. Thus, the effect of these drugs was probably associated with the generation of reactive oxygen species and induction of SOS response. The risk of secondary antibiotic-resistant infections may be decreased by applying antioxidants and antimutagens. At the same time, these increases may also decrease the anti-tumoral action of these compounds.

Keywords

cisplatin oxaliplatin SOS response antibiotic resistance ROS antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Lencastre H., Oliveira D., Tomasz A. 2007. Antibiotic resistant Staphylococcus aureus: A paradigm of adaptive power. Curr. Opin. Microbiol. 10, 428–435.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Livermore D.M. 2004. The need for new antibiotics. Clin. Microbiol. Infect. 10, 1–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Silva M.J., Costa P., Dias A., et al. 2005. Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in the Hprt gene of CHO cells. Environ. Mol. Mutagen. 46 (2), 104–115.CrossRefPubMedGoogle Scholar
  4. 4.
    Chistyakov V.A., Prazdnova E.V., Gutnikova L.V., et al. 2012. Superoxide scavenging activity of plastoquinone derivative 10-(6'-plastoquinonyl. decyltriphenylphosphonium (SkQ1). Biochemistry (Moscow). 77 (7), 776–778.CrossRefGoogle Scholar
  5. 5.
    Prazdnova E.V., Chistyakov V.A., Sazykina M.A., et al. 2014. Study of prooxidant action of ultraviolet radiation with wavelength 258 nm using bacterial biosensors. MEJSR. 21 (8), 1333–1340Google Scholar
  6. 6.
    Manukhov I.V., Kotova V.I., Mal’dov D.K., et al. 2008. Induction of oxidative stress and SOS response in Escherichia coli by vegetable extracts: The role of hydroperoxides and the synergistic effect of simultaneous treatment with cisplatinum. Microbiology (Moscow). 77 (5), 523–529.CrossRefGoogle Scholar
  7. 7.
    De Martinis B.S., Bianchi M.D. 2001. Effect of vitamin C supplementation against cisplatin-induced toxicity and oxidative DNA damage in rats. Pharmacol Res. 44 (4), 317–320.CrossRefPubMedGoogle Scholar
  8. 8.
    Zavilgelsky G.B., Kotova V.Yu., Manukhov I.V. 2007. Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat. Res. 634, 172–176.CrossRefPubMedGoogle Scholar
  9. 9.
    Semin N.A. Sidorenko, S.V., Rezvan, S.P. 2004. Guidelines for susceptibility testing of microorganisms to antibacterial agents. Clin. Microbiol. Antimicrob. Chemother. 6 (4), 1890–1904.Google Scholar
  10. 10.
    Prazdnova E.V. Chistyakov V.A., Churilov M.N., et al. 2015. DNA-protection and antioxidant properties of fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Lett. Appl. Microbiol. 61 (6), 549–554.CrossRefPubMedGoogle Scholar
  11. 11.
    Aly M.S., Ashour M.B., El Nahas S.M., et al. 2003. Genotoxicity and cytotoxicity of the anticancer drugs gemcitabine and cisplatin, separately and in combination: in vivo studies. J. Biol. Sci. 11, 961–972.Google Scholar
  12. 12.
    Lin X., Ramamurthi K., Mishima M., et al. 2001. P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res. 4, 1508–1516.Google Scholar
  13. 13.
    Brozovic G., Orsolic N., Knezevic F., et al. 2008. Evaluation of DNA damage in vivo induced by combined application of cisplatin and sevoflurane. Eur. J. Anaesthesiol. 8, 642–647.CrossRefGoogle Scholar
  14. 14.
    Ta L.E., Espeset L., Podratz J., et al. 2006. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology. 27 (6), 992–1002.CrossRefPubMedGoogle Scholar
  15. 15.
    Orlova R.V. 2002. New medications for colorectal cancer treatment. Prakt. Onkol. 3 (4), 273–281.Google Scholar
  16. 16.
    Miyajima A., Nakashima J., Yoshioka K., et al. 1997. Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br. J. Cancer. 76 (2), 206–210.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Laurent A., Nicco C., Chéreau C., et al. 2005. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 65 (3), 948–956.PubMedGoogle Scholar
  18. 18.
    Godwin A.K., Meister A., O’Dwyer P.J., et al. 1992. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. U. S. A. 89 (7), 3070–3074.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Giri A., Khynriam D., Prasad S.B. 1998. Vitamin C mediated protection on cisplatin induced mutagenicity in mice. Mutat. Res. 421 (2), 139–148.CrossRefPubMedGoogle Scholar
  20. 20.
    Di Cesare Mannelli L., Zanardelli M., Failli P., et al. 2012. Oxaliplatin-induced neuropathy: Oxidative stress as pathological mechanism. Protective effect of silibinin. J. Pain. 13 (3), 276–284.PubMedGoogle Scholar
  21. 21.
    Michel B. 2005. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol. 3 (7),255.CrossRefGoogle Scholar
  22. 22.
    Cirz R.T., Chin J.K., Andes D.R., et al. 2005. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 3 (6),176.CrossRefGoogle Scholar
  23. 23.
    Miller C., Thomsen L.E., Gaggero C., et al. 2004. SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science. 305 (5690), 1629–1631.CrossRefPubMedGoogle Scholar
  24. 24.
    Nautiyal A., Patil K.N., Muniyappa K. 2014. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother. 69 (7), 1834–1843.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Chistyakov
    • 1
  • E. V. Prazdnova
    • 1
  • M. S. Mazanko
    • 1
  • M. N. Churilov
    • 1
  • V. K. Chmyhalo
    • 1
  1. 1.Research Institute of BiologyAcademy of Biology and Biotechnology of Southern Federal University Rostov-on-DonRostov-on-DonRussia

Personalised recommendations