Skip to main content
Log in

Molecular components of JAK/STAT signaling pathway and its interaction with transcription machinery

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

JAK/STAT is a conserved signaling pathway in higher eukaryotes that plays a critical role in different processes of ontogenesis. This article reviews the pathway structure at the molecular level, mainly in Drosophila as a model organism. The review is focused on the data concerning the relationship between this signaling pathway and transcription machinery of higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BRG1:

Brahma-related gene protein 1

CBP/p300:

CREB binding protein and p300

CNTFR:

ciliary neurotrophic factor receptor

DOME:

domeless receptor of the JAK/STAT pathway in drosophila

gp130:

glycoprotein 130, a cytokine receptor

HOP:

hopscotch Janus kinase in drosophila

IFN:

interferon

IL:

interleukin

JAK:

janus kinase

LIFR:

leukemia inhibitory factor receptor

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

PIAS:

protein inhibitors of activated STATs

PTPs:

protein tyrosine phosphatases

SOCS:

supressors of cytokine signaling

STAT:

signal transducer and activator of transcription

TFIID:

transcription factor IID

Tyk-2:

tyrosine protein kinase-2

UPD:

unpaired ligand family involved in JAK/STAT activation in drosophila

References

  1. Pires-daSilva A., Sommer R.J. 2003. The evolution of signalling pathways in animal development. Nature Rev. Genet. 4, 39–49.

    Article  PubMed  CAS  Google Scholar 

  2. Lodish H., Berk A., Matsudaira P., Kaiser C.A., Krieger M., Scott M.P., Zipursky L., Darnell J.E., Jr. (Eds.). 2003. Molecular Cell Biology, 5th ed. NY: Freeman.

    Google Scholar 

  3. Li E., Hristova K. 2006. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry. 45, 6241–6251.

    Article  PubMed  CAS  Google Scholar 

  4. Arbouzova N.I., Zeidler M.P. 2006. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development. 133, 2605–2616.

    Article  PubMed  CAS  Google Scholar 

  5. Dawson M.A., Bannister A.J., Gottgens B., Foster S.D., Bartke T., Green A.R., Kouzarides T. 2009. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 461, 819–822.

    Article  PubMed  CAS  Google Scholar 

  6. Shi S., Larson K., Guo D., Lim S.J., Dutta P., Yan S.J., Li W.X. 2008. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nature Cell Biol. 10, 489–496.

    Article  PubMed  CAS  Google Scholar 

  7. Wright V.M., Vogt K.L., Smythe E., Zeidler M.P. 2011. Differential activities of the Drosophila JAK/STAT pathway ligands Upd, Upd2 and Upd3. Cell Signal. 23, 920–927.

    Article  PubMed  CAS  Google Scholar 

  8. Harrison D.A., McCoon P.E., Binari R., Gilman M., Perrimon N. 1998. Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev. 12, 3252–3263.

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y.H., Huang M.L. 2010. Organogenesis and tumorigenesis: Insight from the JAK/STAT pathway in the Drosophila eye. Dev. Dyn. 239, 2522–2533.

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert M.M., Weaver B.K., Gergen J.P., Reich N.C. 2005. A novel functional activator of the Drosophila JAK/STAT pathway, unpaired2, is revealed by an in vivo reporter of pathway activation. Mech. Dev. 122, 939–948.

    Article  PubMed  CAS  Google Scholar 

  11. Brown S., Hu N., Hombria J.C. 2001. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr. Biol. 11, 1700–1705.

    Article  PubMed  CAS  Google Scholar 

  12. Binari R., Perrimon N. 1994. Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev. 8, 300–312.

    Article  PubMed  CAS  Google Scholar 

  13. Luo H., Dearolf C.R. 2001. The JAK/STAT pathway and Drosophila development. Bioessays. 23, 1138–1147.

    Article  PubMed  CAS  Google Scholar 

  14. Hombria J.C., Brown S. 2002. The fertile field of Drosophila Jak/STAT signalling. Curr. Biol. 12, R569–575.

    Article  PubMed  Google Scholar 

  15. Zeidler M.P., Bach E.A., Perrimon N. 2000. The roles of the Drosophila JAK/STAT pathway. Oncogene. 19, 2598–2606.

    Article  PubMed  CAS  Google Scholar 

  16. Yamaoka K., Saharinen P., Pesu M., Holt V.E., Silvennoinen O., O’Shea J.J. 2004. The Janus kinases (Jaks). Genome Biol. 5, 253.

    Article  PubMed  Google Scholar 

  17. Usacheva A., Kotenko S., Witte M.M., Colamonici O.R. 2002. Two distinct domains within the N-terminal region of Janus kinase 1 interact with cytokine receptors. J. Immunol. 169, 1302–1308.

    PubMed  CAS  Google Scholar 

  18. Ekas L.A., Cardozo T.J., Flaherty M.S., McMillan E.A., Gonsalves F.C., Bach E.A. 2010. Characterization of a dominant-active STAT that promotes tumorigenesis in Drosophila. Dev. Biol. 344, 621–636.

    Article  PubMed  CAS  Google Scholar 

  19. Ihle J.N. 2001. The Stat family in cytokine signaling. Curr. Opin. Cell Biol. 13, 211–217.

    Article  PubMed  CAS  Google Scholar 

  20. Calo V., Migliavacca M., Bazan V., Macaluso M., Buscemi M., Gebbia N., Russo A. 2003. STAT proteins: from normal control of cellular events to tumorigenesis. J. Cell Physiol. 197, 157–168.

    Article  PubMed  CAS  Google Scholar 

  21. Li B., Zhang G.S., Dai C.W., Pei M.F. 2005. The activation of JAK/STAT signal pathway in hypereosinophilic syndrome and the patients therapeutic response to imatinib. Zhonghua Yi Xue Za Zhi. 85, 448–452.

    PubMed  CAS  Google Scholar 

  22. Horvath C.M. 2000. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem. Sci. 25, 496–502.

    Article  PubMed  CAS  Google Scholar 

  23. Levy D.E., Darnell J.E., Jr. 2002. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell. Biol. 3, 651–662.

    Article  CAS  Google Scholar 

  24. Shuai K. 1999. The STAT family of proteins in cytokine signaling. Prog. Biophys. Mol. Biol. 71, 405–422.

    Article  PubMed  CAS  Google Scholar 

  25. Collum R.G., Brutsaert S., Lee G., Schindler C. 2000. A Stat3-interacting protein (StIP1) regulates cytokine signal transduction. Proc. Natl. Acad. Sci. U. S. A. 97, 10120–10125.

    Article  PubMed  CAS  Google Scholar 

  26. Sadzak I., Schiff M., Gattermeier I., Glinitzer R., Sauer I., Saalmuller A., Yang E., Schaljo B., Kovarik P. 2008. Recruitment of Stat1 to chromatin is required for interferon-induced serine phosphorylation of Stat1 transactivation domain. Proc. Natl. Acad. Sci. U. S. A. 105, 8944–8949.

    Article  PubMed  CAS  Google Scholar 

  27. Greenhalgh C.J., Hilton D.J. 2001. Negative regulation of cytokine signaling. J. Leukoc. Biol. 70, 348–356.

    PubMed  CAS  Google Scholar 

  28. Baeg G.H., Zhou R., Perrimon N. 2005. Genomewide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev. 19, 1861–1870.

    Article  PubMed  CAS  Google Scholar 

  29. Stec W.J., Zeidler M.P. 2011. Drosophila SOCS proteins. J. Signal. Transduct. 2011, 894510. doi 10.1155/2011/894510

    PubMed  Google Scholar 

  30. Alexander W.S. 2002. Suppressors of cytokine signalling (SOCS) in the immune system. Nature Rev. Immunol. 2, 410–416.

    CAS  Google Scholar 

  31. Callus B.A., Mathey-Prevot B. 2002. SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc. Oncogene. 21, 4812–4821.

    Article  PubMed  CAS  Google Scholar 

  32. Rawlings J.S., Rosler K.M., Harrison D.A. 2004. The JAK/STAT signaling pathway. J. Cell. Sci. 117, 1281–1283.

    Article  PubMed  CAS  Google Scholar 

  33. Rogers R.S., Horvath C.M., Matunis M.J. 2003. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J. Biol. Chem. 278, 30091–30097.

    Article  PubMed  CAS  Google Scholar 

  34. Betz A., Lampen N., Martinek S., Young M.W., Darnell J.E., Jr. 2001. A Drosophila PIAS homologue negatively regulates stat92E. Proc. Natl. Acad. Sci. U. S. A. 98, 9563–9568.

    Article  PubMed  CAS  Google Scholar 

  35. Lohi O., Lehto V.P. 2001. STAM/EAST/Hbp adapter proteins-integrators of signalling pathways. FEBS Lett. 508, 287–290.

    Article  PubMed  CAS  Google Scholar 

  36. Icardi L., De Bosscher K., Tavernier J. 2012. The HAT/HDAC interplay: multilevel control of STAT signaling. Cytokine Growth Factor Rev. 23, 283–291.

    Article  PubMed  CAS  Google Scholar 

  37. Shuai K. 2000. Modulation of STAT signaling by STAT-interacting proteins. Oncogene. 19, 2638–2644.

    Article  PubMed  CAS  Google Scholar 

  38. Cantwell C.A., Sterneck E., Johnson P.F. 1998. Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Mol. Cell. Biol. 18, 2108–2117.

    PubMed  CAS  Google Scholar 

  39. Zhang X., Wrzeszczynska M.H., Horvath C.M., Darnell J.E., Jr. 1999. Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol. Cell Biol. 19, 7138–7146.

    PubMed  CAS  Google Scholar 

  40. Ohmori Y., Schreiber R.D., Hamilton T.A. 1997. Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J. Biol. Chem. 272, 14899–14907.

    Article  PubMed  CAS  Google Scholar 

  41. Qureshi S.A., Salditt-Georgieff M., Darnell J.E., Jr. 1995. Tyrosine-phosphorylated Stat1 and Stat2 plus a 48-kDa protein all contact DNA in forming interferon-stimulated-gene factor 3. Proc. Natl. Acad. Sci. U. S. A. 92, 3829–3833.

    Article  PubMed  CAS  Google Scholar 

  42. Goenka S., Boothby M. 2006. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc. Natl. Acad. Sci. U. S. A. 103, 4210–4215.

    Article  PubMed  CAS  Google Scholar 

  43. Kwon M.C., Koo B.K., Moon J.S., et al. 2008. Crif1 is a novel transcriptional coactivator of STAT3. EMBO J. 27, 642–653.

    Article  PubMed  CAS  Google Scholar 

  44. Bhattacharya S., Eckner R., Grossman S., Oldread E., Arany Z., D’Andrea A., Livingston D.M. 1996. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature. 383, 344–347.

    Article  PubMed  CAS  Google Scholar 

  45. Pfitzner E., Jahne R., Wissler M., Stoecklin E., Groner B. 1998. p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol. Endocrinol. 12, 1582–1593.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang J.J., Vinkemeier U., Gu W., Chakravarti D., Horvath C.M., Darnell J.E., Jr. 1996. Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc. Natl. Acad. Sci. U. S. A. 93, 15092–15096.

    Article  PubMed  CAS  Google Scholar 

  47. Valineva T., Yang J., Palovuori R., Silvennoinen O. 2005. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. J. Biol. Chem. 280, 14989–14996.

    Article  PubMed  Google Scholar 

  48. Zhu M., John S., Berg M., Leonard W.J. 1999. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell. 96, 121–130.

    Article  PubMed  CAS  Google Scholar 

  49. Paulson M., Press C., Smith E., Tanese N.. Levy D.E. 2002. IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nature Cell. Biol. 4, 140–147.

    Article  PubMed  CAS  Google Scholar 

  50. Horvath C.M., Stark G.R., Kerr I.M., Darnell J.E., Jr. 1996. Interactions between STAT and non-STAT proteins in the interferon-stimulated gene factor 3 transcription complex. Mol. Cell Biol. 16, 6957–6964.

    PubMed  CAS  Google Scholar 

  51. Martinez-Moczygemba M., Gutch M.J., French D.L., Reich N.C. 1997. Distinct STAT structure promotes interaction of STAT2 with the p48 subunit of the interferon-alpha-stimulated transcription factor ISGF3. J. Biol. Chem. 272, 20070–20076.

    Article  PubMed  CAS  Google Scholar 

  52. Stocklin E., Wissler M., Gouilleux F., Groner B. 1996. Functional interactions between Stat5 and the glucocorticoid receptor. Nature. 383, 726–728.

    Article  PubMed  CAS  Google Scholar 

  53. Huang M., Qian F., Hu Y., Ang C., Li Z., Wen Z. 2002. Chromatin-remodelling factor BRG1 selectively activates a subset of interferon-alpha-inducible genes. Nature Cell. Biol. 4, 774–781.

    Article  PubMed  CAS  Google Scholar 

  54. Giraud S., Hurlstone A., Avril S., Coqueret O. 2004. Implication of BRG1 and cdk9 in the STAT3-mediated activation of the p21waf1 gene. Oncogene. 23, 7391–7398.

    Article  PubMed  CAS  Google Scholar 

  55. Ni Z., Karaskov E., Yu T., Callaghan S.M., Der S., Park D.S., Xu Z., Pattenden S.G., Bremner R. 2005. Apical role for BRG1 in cytokine-induced promoter assembly. Proc. Natl. Acad. Sci. U. S. A. 102, 14611–14616.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y., Cheng M.B., Zhang Y.J., Zhong X., Dai H., Ya L., Wu N.H., Shen Y.F. 2010. A switch from hBrm to Brg1 at IFN gamma-activated sequences mediates the activation of human genes. Cell Res. 20, 1345–1360.

    Article  PubMed  CAS  Google Scholar 

  57. Letimier F.A., Passin N., Gasparian S., Bianchi E., Rogge L. 2007. Chromatin remodeling by the SWI/SNF-like BAF complex and STAT4 activation synergistically induce IL-12Rbeta2 expression during human Th1 cell differentiation. EMBO J. 26, 1292–1302.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang F., Boothby M. 2006. T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-gamma promoter are Stat4 dependent. J. Exp. Med. 203, 1493–1505.

    Article  PubMed  CAS  Google Scholar 

  59. Xu R., Spencer V.A., Bissell M.J. 2007. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J. Biol. Chem. 282, 14992–14999.

    Article  PubMed  CAS  Google Scholar 

  60. Wurster A.L., Pazin M.J. 2008. BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Mol. Cell. Biol. 28, 7274–7285.

    Article  PubMed  CAS  Google Scholar 

  61. Snyder M., He W., Zhang J.J. 2005. The DNA replication factor MCM5 is essential for Stat1-mediated transcriptional activation. Proc. Natl. Acad. Sci. U. S. A. 102, 14539–14544.

    Article  PubMed  CAS  Google Scholar 

  62. Muller P., Kuttenkeuler D., Gesellchen V., Zeidler M.P., Boutros M. 2005. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature. 436, 871–875.

    Article  PubMed  Google Scholar 

  63. Panov V.V., Kuzmina J.L., Doronin S.A., Kopantseva M.R., Nabirochkina E.N., Georgieva S.G., Vorobyeva N.E., Shidlovskii Y.V. 2012. Transcription co-activator SAYP mediates the action of STAT activator. Nucleic Acids Res. 40, 2445–2453.

    Article  PubMed  CAS  Google Scholar 

  64. Vorobyeva N.E., Soshnikova N.V., Nikolenko J.V., Kuzmina J.L., Nabirochkina E.N., Georgieva S.G.. Shidlovskii Y.V. 2009. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc. Natl. Acad. Sci. U. S. A. 106, 11049–11054.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shaposhnikov.

Additional information

Original Russian Text © A.V. Shaposhnikov, I.F. Komar’kov, L.A. Lebedeva, Yu.V. Shidlovskii, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 3, pp. 388–397.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaposhnikov, A.V., Komar’kov, I.F., Lebedeva, L.A. et al. Molecular components of JAK/STAT signaling pathway and its interaction with transcription machinery. Mol Biol 47, 343–351 (2013). https://doi.org/10.1134/S0026893313030126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313030126

Keywords

Navigation