Skip to main content
Log in

Comparative analysis of herpes simplex virus thymidine kinase gene expression potentiation via HIV-1 Tat-TAR system and cancer-specific promoters in P53(+) and P53(-) cells

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Tumor-specific promoters are predominantly active and ensure expression of the gene under control exclusively in cancer cells. However, low activity of the promoters is an essential disadvantage for their therapy usage. To achieve a higher expression level of the therapeutic gene, herpes simplex virus thymidine kinase (HSV-tk), the Tat-TAR-system utilized by HIV-1 for increasing its own gene expression was developed. A potentiating activity of tat gene under the control of two different cancer-specific (human survivin gene and human telomerase reverse transcriptase) promoters for increasing the HSV-tk gene expression being regulated by TAR-element was evaluated, and activity of the cancer-specific promoters in the Tat-TAR-system was compared. Cotransfection of the cells with both constructions led to the tat protein synthesis and its affect the HIV-1 TAR-element. An expression level of HSV- tk gene ensured by both promoters in the binary system was close to that for strong nonspecific cytomegalovirus (CMV) promoter. Enzymatic activity of HSV-tk protein in cells containing both elements of Tat-TAR-system was two orders of magnitude higher than that in the cells transfected with HSV-tk gene under control of the cancer-specific promoter. Notably, the effect was independent of p53-status of transfected cells: HSV-tk expression level was almost the same in p53(+) and p53(-) cells. The obtained results show that the system may be used for therapy of different cancer types both p53-defective and p53-positive ones inhibiting cancer-specific promoters activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GCV:

ganciclovir

HSV-tk:

herpes simplex virus thymidine kinase

pSurv:

promoter region of human BIRC5 gene

phTERT-CMV:

hybrid promoter of human telomerase reverse transcriptase gene and cytomegalovirus

phTERT:

promoter of human telomerase reverse transcriptase gene

pCMV/E:

promoter and enhancer regions of early cytomegalovirus genes

ΔLTRep:

fragment of LTR HIV-1 used in the expression construct

References

  1. Chen J.S., Liu J.C., Shen L., Rau K.M., Kuo H.P., Li Y.M., Shi D., Lee Y.C., Chang K.J., Hung M.C. 2004. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther. 11, 740–747.

    Article  CAS  PubMed  Google Scholar 

  2. Konopka K., Spain C, Yen A., Overlid N., Gebreme-dhin S., Duzgunes N. 2009. Correlation between the levels of survivin and survivin promoter-driven gene expression in cancer and non-cancer cells. Cell Mol. Biol. Lett. 14, 70–89.

    Article  CAS  PubMed  Google Scholar 

  3. Lu B., Makhija S.K., Nettelbeck D.M., Rivera A.A., Wang M., Komarova S., Zhou F., Yamamoto M., Haisma H.J., Alvarez R.D., Curiel D.T. Zhu Z.B. 2005. Evaluation of tumor-specific promoter activities in melanoma. Gene Ther. 12, 330–338.

    Article  CAS  PubMed  Google Scholar 

  4. Mingaleeva R.N., Chernov I.P., Kopantsev E.P., Stukacheva E.A., Skaptsova N.V., Sverdlov E.D. 2009. Study of transactivation effect on transcription by Tat-TAR system of human immunodeficiency virus type 1 (HIV-1) virus in non4ymphoid cells HEK293 and Calu-1. Mol. Genet., Mikrobiol,, Virusol. 2, 11–15.

    Google Scholar 

  5. Kingsman S.M. Kingsman A.J. 1996. The regulation of human immunodeficiency virus type-1 gene expression. Eur. J. Biochem. 240, 491–507.

    Article  CAS  PubMed  Google Scholar 

  6. Nishihara E., Nagayama Y., Mawatari F., Tanaka K., Namba H., Niwa M. Yamashita S. 1997. Retrovirus-mediated herpes simplex virus thymidine kinase gene transduction renders human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro and in vivo. Endocrinology. 138, 4577–4583.

    Article  CAS  PubMed  Google Scholar 

  7. Tiberghien P. 1994. Use of suicide genes in gene therapy. J. Leukoc. Biol. 56, 203–209.

    CAS  PubMed  Google Scholar 

  8. Mityaev M.V., Kopantsev E.P., Buzdin A.A., Vinogra-dova T.V., Sverdlov E.D. 2008. Functional significance of a putative Sp1 transcription factor binding site in the survivin gene promoter. Biokhimiya. 73, 1476–1485.

    Google Scholar 

  9. Slizhikova D.K., Zinovyeva M.V., Kuzmin D.V., Snezhkov E.V., Shakhparonov M.I., Dmitriev R.I., Antipova N.V., Zavalova L.L., Sverdlov E.D. 2007. Decreased expression of the human immunoglo-bulin J-chain gene in squamous cell cancer and adeno-carcinoma of the lungs. Mol. Biol. 41, 594–600.

    Article  CAS  Google Scholar 

  10. Harlow E., Lane D. 1988. Antibodies. A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  11. Hayashi K., Hayashi T., Sun H.D. Takeda Y. 2000. Potentiation of ganciclovir toxicity in the herpes simplex virus thymidine kinase/ganciclovir administration system by ponicidin. Cancer Gene Ther. 7, 45–52.

    Article  CAS  PubMed  Google Scholar 

  12. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  13. Hinds T.A., Compadre C., Hurlburt B.K., Drake R.R. 2000. Conservative mutations of glutamine-125 in herpes simplex virus type 1 thymidine kinase result in a ganciclovir kinase with minimal deoxypyrimidine kinase activities. Biochemistry. 39, 4105–4111.

    Article  CAS  PubMed  Google Scholar 

  14. Mercer K.E., Ahn C.E., Coke A., Compadre C.M., Drake R.R. 2002. Mutation of herpesvirus thymidine kinase to generate ganciclovir-specific kinases for use in cancer gene therapies. Protein Eng. 15, 903–911.

    Article  CAS  PubMed  Google Scholar 

  15. Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science. 266, 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  16. Shay J.W., Bacchetti S. 1997. A survey of telomerase activity in human cancer. Eur. J. Cancer. 33, 787–791.

    Article  CAS  PubMed  Google Scholar 

  17. Altieri D.C. 2003. Validating survivin as a cancer therapeutic target. Nature Rev. Cancer. 3, 46–54.

    Article  CAS  Google Scholar 

  18. Andersen M.H., Svane I.M., Becker J.C., Straten P.T. 2007. The universal character of the tumor-associated antigen survivin. Clin. Cancer Res. 13, 5991–5994.

    Article  CAS  PubMed  Google Scholar 

  19. Bao R., Connolly D.C, Murphy M., Green J., Weinstein J.K., Pisarcik D.A. Hamilton T.C. 2002. Activation of cancer-specific gene expression by the survivin promoter. J. Natl. Cancer Inst. 94, 522–528.

    CAS  PubMed  Google Scholar 

  20. Mirza A., McGuirk M., Hockenberry T.N., Wu Q., Ashar H., Black S., Wen S.F., Wang L., Kirschmeier P., Bishop W.R., Nielsen L.L., Pickett C.B., Liu S. 2002. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene. 21, 2613–2622.

    Article  CAS  PubMed  Google Scholar 

  21. Raj D., Liu T., Samadashwily G., Li F., Grossman D. 2008. Survivin repression by p53, Rb and E2F2 in normal human melanocytes. Carcinogenesis. 29, 194–201.

    Article  CAS  PubMed  Google Scholar 

  22. Yasumoto S., Kunimura C., Kikuchi K., Tahara H., Ohji H., Yamamoto H., Ide T, Utakoji T. 1996. Telomerase activity in normal human epithelial cells. Oncogene. 13, 433–439.

    CAS  PubMed  Google Scholar 

  23. Davis J.J., Wang L., Dong F., Zhang L., Guo W., Teraishi F., Xu K., Ji L., Fang B. 2006. Oncolysis and suppression of tumor growth by a GFP-expressing onc-olytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther. 13, 720–723.

    Article  CAS  PubMed  Google Scholar 

  24. Caamano J., Ruggeri B., Momiki S., Sickler A., Zhang S.Y., Klein-Szanto A.J. 1991. Detection of p53 in primary lung tumors and non-small cell lung carcinoma cell lines. Am. J. Pathol. 139, 839–845.

    CAS  PubMed  Google Scholar 

  25. Stewart S.A., Poon B., Jowett J.B., Xie Y., Chen I.S. 1999. Lentiviral delivery of HIV-1 Vpr protein induces apoptosis in transformed cells. Proc. Natl. Acad. Sci. USA. 96, 12039–12043.

    Article  CAS  PubMed  Google Scholar 

  26. Boshart M., Weber F., Jahn G., Dorsch-Hasler K., Fleckenstein B., Schaffner W. 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 41, 521–530.

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt E.V., Christoph G., Zeller R., Leder R. 1990. The cytomegalovirus enhancer: A pan-active control element in transgenic mice. Mol. Cell Biol. 10, 4406–4411.

    CAS  PubMed  Google Scholar 

  28. Shats I., Milyavsky M., Tang X., Stambolsky P., Erez N., Brosh R., Kogan I., Braunstein I., Tzukerman M., Ginsberg D., Rotter V. 2004. p53-dependent down-regulation of telomerase is mediated by p21 waf 1. J. Biol. Chem. 279, 50976–50985.

    Article  CAS  PubMed  Google Scholar 

  29. Beck C, Cayeux S., Lupton S.D., Dorken B., Blanken-stein T. 1995. The thymidine kinase/ganciclovir-medi-ated “suicide” effect is variable in different tumor cells. Hum. Gene Ther. 6, 1525–1530.

    Article  CAS  PubMed  Google Scholar 

  30. Haberkorn U., Khazaie K., Morr I., Altmann A., Müller M., van Kaick G. 1998. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl. Med. Biol. 25, 367–373.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mingaleeva.

Additional information

Original Russian Text © R.N. Mingaleeva, I.P. Chernov, E.P. Kopantzev, L.L. Zavalova, A. V. Sass, E.D. Sverdlov, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 3, pp. 507–514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingaleeva, R.N., Chernov, I.P., Kopantzev, E.P. et al. Comparative analysis of herpes simplex virus thymidine kinase gene expression potentiation via HIV-1 Tat-TAR system and cancer-specific promoters in P53(+) and P53(-) cells. Mol Biol 44, 448–453 (2010). https://doi.org/10.1134/S0026893310030131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310030131

Key words

Navigation