Skip to main content
Log in

Anti-Oxidative Response of Cyanobacterium Anabaena sp. strain PCC 7120 to Arsenite (As(III))

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Arsenite (As(III)) induced changes were investigated in the diazotrophic cyanobacterium Anabaena PCC 7120. The cells of Anabaena sp. strain PCC 7120 exposed to As(III) produced H2O2 and its production increased with increase in As(III) concentration. As a part of resistant mechanism and also to counteract the deleterious effect of H2O2, the cells of Anabaena sp. strain PCC 7120 produced more ascorbate peroxidase (APx) whose level also increased in response to As(III) concentrations. The increase in APx activity was directly proportional to the increase in H2O2 production and maximum APx activity was recorded at 40 ppm of As(III). In contrast, glutathione reductase (GR) activity decreases with increase in As(III) concentrations and attained its minimum level at 40 ppm of As(III). Lipid peroxidation increased with increase in As(III) concentration and maximum peroxidation (which was about two fold higher than that of the untreated control cells) was recorded at 40 ppm of As(III). Exposure of the Anabaena sp. strain PCC 7120cells to As(III) has also resulted in a significant increase in ascorbate and dehydro-ascorbate contents which was about 6.44 and 1.97 fold higher than that of the untreated control cells, respectively at 40 ppm of As(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Abbreviations: AAS—Atomic absorption spectrophotometer, APx—Ascorbate peroxidase, As(III)—Arsenite, As(V)—Arsenate, As—Arsenic, ASA—Ascorbic acid, Asc—Ascorbate, CAT—Catalase, Chl a—Chlorophyll a, DAB—3,3'-diaminobenzidine, DAs—Dehydro-ascorbate, DTT—Dithiothreitol, EDTA—Ethylene diamine tetraacetic acid, GPx—Guaiacol peroxidise, GR—Glutathione reductase, GSH—Glutathione, H2O2—Hydroperoxides, LC—Lethal concentration, MDA—Malondialdehyde, NADPH—Nicotinamide adenine dinucleotide phosphate, NBT—Nitro Blue tetrazolium, PUFA—Poly unsaturated Fatty acids, ppm—parts per million, PVP—Polyvinyl pyrrolidone, ROS—Reactive oxygen species, SH—sufhydryl, SOD—Superoxide dismutase, TBA—Thiobarbituric acid, TCA—Trichloroacetic acid.

REFERENCES

  1. Aebi, H. Catalase, in Methods in Enzymology, Packer, L., Ed., Orlando: Academic, 1984, vol. 105, pp. 121–126.

    Google Scholar 

  2. Bartosz, G., Oxidative stress in plants, Acta Physiol., Plant., 1997, vol. 19, pp. 47–64.

    Article  CAS  Google Scholar 

  3. Bhattacharjee, H., Mukhopadhyay, R., Thiyagarajan, S., and Rosen, B.P., Aquaglyceroporin: ancient channel for metalloids, J. Biol., 2008. vol. 7, pp. 33–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhattacharya, P. and Pal, R., Response of cyanobacteria to arsenic toxicity, J. Appl. Phycol., 2011, vol. 23, pp. 293–299.

    Article  CAS  Google Scholar 

  5. Castillo, F.I., Penel, I., and Greppin, H., Peroxidase release induced by ozone in Sedum album leaves, Plant Physiol., 1984, vol. 74, pp. 846–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cerutti, P.A., Prooxidant states and tumor promotion, Science, 1985, vol. 227, pp. 375–381.

    Article  CAS  Google Scholar 

  7. Gebel, T. Confounding variables in the environmental toxicology of arsenic, Toxicol., 2000, vol. 144, pp. 155–162.

    Article  CAS  Google Scholar 

  8. Giannopolitis, C. and Ries, N. Superoxide dismutase I: occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gratão, P.L., Polle, A., Lea, P.J., and Azevedo, R.A., Making the life of heavy metal-stress plants a little easier, Funct. Plant Biol., 2005, vol. 32, pp. 481–494.

    Article  CAS  Google Scholar 

  10. Hepler, P.K. and Wayne, R.O., Calcium and plant development, Annu. Rev. Plant Physiol., 1985, vol. 36, pp. 397–439.

    Article  CAS  Google Scholar 

  11. Hussein, K.A. and Joo, J.H., Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes, African J. Microbiol. Res., 2013, vol. 7, no. 20, pp. 288–2296.

    Google Scholar 

  12. Kenney, L. and Kaplan, J.H., Arsenate substitutes for phosphate in the human red cell sodium pump and anion exchanger, J. Biol. Chem., 1988, vol. 263, pp. 7954–7960.

    CAS  PubMed  Google Scholar 

  13. Kwon, S.I. and Anderson, A.J., Catalase activities of Phanerochaete chrysosporium are not coordinately produced with ligninolytic metabolism: catalase from a white-rot fungus, Curr. Microbiol., 2001, vol. 42, pp. 8–11.

    Article  CAS  PubMed  Google Scholar 

  14. Lenartova, V., Holovska, K., and Javorsky, P., The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium, FEMS Microbiol Ecol., 1998, vol. 27, pp. 319–325.

    Article  Google Scholar 

  15. Liu, J., Chen, H., Miller, D.S., Sauvedra, J.E., Keefer, L.K., Johnson, D.R., Klaassen, C.D., and Waalkes, M.P., Overexpression of glutathione s-transferase II and multi-drug resistance transport proteins is associated with acquired tolerance to inorganic arsenic, Mol. Pharmacol., 2001, vol. 60, pp. 302–309.

    Article  CAS  PubMed  Google Scholar 

  16. Lurie, S., Antioxidants, in Postharvest Oxidative Stress in Horticultural Crops, Hodges, D.M., Ed., New York: Food Products Press, 2003, pp. 131–150.

    Google Scholar 

  17. Mascher, R., Lippman, B., Holiinger, S., and Bergmann, H., Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants, Plant Sci., 2002, vol. 63, pp. 961–969.

    Article  Google Scholar 

  18. Montillet, J.L., Chamnongpol, S., Rustérucci, C., Dat, J., Van de Cotte, B., Agnel, J.-P., Battesti, C., Inzé, D., Van Breusegem, F., and Triantaphylidès, C., Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves, Plant Physiol., 2005, vol. 138, pp. 1516–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mylona, P.V., Polidoros, A.N., and Scandalios, J.G., Modulation of antioxidant response by arsenic in maize, Free Rad. Biol. Med., 1998, vol. 25, no. 4/5, pp. 576–585.

    Article  Google Scholar 

  20. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate specific peroxide in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  21. Okamura, M., An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma, Clin. Chem. Acta., 1980, vol. 103, pp. 259–268.

    Article  CAS  Google Scholar 

  22. Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 1979, vol. 95, pp. 351–358.

    Article  CAS  PubMed  Google Scholar 

  23. Pnueli, L., Liang, H., Rozenberg, M., and Mittler, R. Growth suppression, altered stomatal responses and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants, Plant J., 2003, vol. 34, pp. 187–203.

    Article  CAS  PubMed  Google Scholar 

  24. Rai, A.K., Cyanobacterial Nitrogen Metabolism and Environmental Biotechnology, New Dehli: Narosa, 1997, pp. 73–87.

  25. Rensing, C. and Rosen, B., Heavy metals cycle (arsenic, mercury, selenium, others), in Encyclopedia of Microbiology, Schaeter, M., Ed., Oxford: Elsevier, 2009, pp. 205–219.

    Google Scholar 

  26. Rippka, R., Derulles, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y., Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 1979, vol. 111, pp. 1–61.

    Google Scholar 

  27. Rosen, B.P., Biochemistry of arsenic detoxification, FEBS Lett., 2002, vol. 529, pp. 86–92.

    Article  CAS  PubMed  Google Scholar 

  28. Santos, C., Gaspar, C.A., Branco-Price, C., Teixeira, A., and Ferreira, R.B., Exposure of Lemna minor to arsenite: expression levels of components and intermediates of the ubiquitin/proteasome pathway, Plant Cell Physiol., 2006, vol. 47, pp. 1262–1273.

    Article  CAS  PubMed  Google Scholar 

  29. Schaedle, M. and Bassham, J.A., Chloroplast glutathione reductase, Plant Physiol., 1977, vol. 59, pp. 1011–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmoger, M.E.V., Oven, M., and Grill, E., Detoxification of arsenic by phytochelatins in plants, Plant Physiol., 2000, vol. 122, pp. 793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh, H.P., Batish, D.R., Kohlo, R.K., and Arora, K., Arsenic-induced root growth inhibition in mungbean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation, Plant Growth Regul., 2007, vol. 53, pp. 65–73.

    Article  CAS  Google Scholar 

  32. Smedley, P.L. and Kinniburgh, D.G., A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 2002, vol. 17, pp. 517–568.

    Article  CAS  Google Scholar 

  33. Smirnoff, N., The role of active oxygen in the response of plants to water deficit and desiccation, New Phytol., 1993, vol. 125, pp. 27–58.

    Article  CAS  Google Scholar 

  34. Srivastava, A.K., Bhargava, P., and Rai, L.C., Differential response of antioxidative defense system of Anabaena doliolum under arsenite and arsenate stress, J. Basic Microbiol., 2009, vol. 49, pp. S63–S72.

    Article  PubMed  Google Scholar 

  35. Srivastava, A.K., Bhargava, P., Mishra, Y., Shukla, B., and Rai, L.C., Effect of pretreatment of salt, copper and temperature on ultra-violet-B-induced antioxidants in diazotrophic cyanobacterium Anabaena doliolum, J. Basic Microbiol., 2006, vol. 46, pp. 135–144.

    Article  CAS  PubMed  Google Scholar 

  36. Stoeva, N., Berova, M., and Zlatev, Z., Effect of arsenic on some physiological parameters in bean plants, Biol. Plant., 2005, vol. 49, pp. 293–296.

    Article  CAS  Google Scholar 

  37. Sundaram, S. and Soumya, K.K., Study of physiological and biochemical alterations in cyanobacterium under organic stress, Am. J. Plant. Physiol., 2011, vol. 6, pp. 1–16.

    Article  CAS  Google Scholar 

  38. Thiel, T., Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis, J. Bacteriol., 1988, vol. 170, pp. 1143–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thordal-Christensen, H., Zhang, Z, Wei, Y., and Collinge, D.B., Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction, The Plant J., 1997, vol. 11, pp. 1187–1192.

    Article  CAS  Google Scholar 

  40. Turpeinen, R., Interactions between metals, microbes and plants: bioremediation of arsenic and lead contaminated soils, MSc Dissertation in Environmental Ecology, Fac. Sci., Univ. Helsinki, 2002.

  41. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines, Plant Sci., 2000, vol.151, pp. 59–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. Dhuldhaj or S. Singh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhuldhaj, U., Pandya, U. & Singh, S. Anti-Oxidative Response of Cyanobacterium Anabaena sp. strain PCC 7120 to Arsenite (As(III)). Microbiology 87, 848–856 (2018). https://doi.org/10.1134/S0026261718060097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718060097

Keywords:

Navigation