Microbiology

, Volume 87, Issue 2, pp 249–260 | Cite as

Cyanobacterial Diversity in the Soils of Russian Dry Steppes and Semideserts

Experimental Articles
  • 13 Downloads

Abstract

Taxonomic diversity of cyanobacterial communities in solonetz, meadow, chestnut, and brown semidesert soils of the zone of dry steppes and semideserts in three regions of Russia (Kalmyk Republic and Volgograd and Astrakhan oblasts) was studied. Cyanobacterial communities of the solonetz and chestnut soils were shown to be similar in structure, with predominance of the orders Nostocales and Synechococcales, while the similarity between meadow and brown semidesert soils was the lowest. Morphological and molecular genetic analysis revealed members of the genera Desmonostoc, Hassallia, Komvophoron, Nodosilinea, Pseudanabaena, and Rhabdoderma, which have not been previously detected in the soils of these types.

Keywords

cyanobacteria soils dry steppes semideserts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algal Collection of Soil Science Institute (ACSSI). http://acssi.org. Accessed 29.07.2017.Google Scholar
  2. Alwathnani, H. and Johansen, J.R., Cyanobacteria in soils from a Mojave desert ecosystem, Monographs Western North American Naturalist, 2011, vol. 5, pp. 71–89.CrossRefGoogle Scholar
  3. Berrendero, E., Perona, E., and Mateo, P., Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 447–460.CrossRefGoogle Scholar
  4. Bhatnagar, A., Makandar, M. B., Garg, M.K., and Bhatnagar, M., Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India), J. Arid Environ., 2008, vol. 72, pp. 73–83.CrossRefGoogle Scholar
  5. Chrismas, N., Barker, G., Anesio, A.M., and Sanches-Baracaldo, P., Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401, BMC Genom., 2016, vol. 17, p. 533.CrossRefGoogle Scholar
  6. Dobrovol’skii, G.V. and Urusevskaya, I.S., Geografiya pochv (Soil Geography), Moscow: Mos. Gos. Univ., 2004.Google Scholar
  7. Flechtner, V.R., Boyer, S.L., Johansen, J.R., and DeNoble, M.L., Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils, Nova Hedwigia, 2002, no. 74, pp. 1–24.CrossRefGoogle Scholar
  8. Garcia-Pichel, F., López-Cortés, A., and Nübel, U., Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau, Appl. Environ. Microbiol., 2001, vol. 67, pp. 1902–1910.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guiry, M.D. and Guiry, G.M., AlgaeBase. World-wide electronic publication. Natl. Univ. Ireland, Galway, 2017. http://www.algaebase.org. Accessed 29.07.2017.Google Scholar
  10. Hašler, P. and Poulícková, A., Diversity, taxonomy and autecology of autochtonous epipelic cyanobacteria of the genera Komvophoron and Isocystis (Borziaceae, Oscillatoriales), Biologia (Bratislava), 2010, vol. 65, no. 1, pp. 7–16.Google Scholar
  11. Hašler, P., Dvořák, P., Johansen, J. R., Kitner, M., Ondřej, V., and Poulíčková, A., Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria), Fottea, 2012, no. 12, pp. 341–356.Google Scholar
  12. Hrouzek, P., Lukešová, A., Mareš, J., and Ventura, S., Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc, Fottea, 2013, vol. 13, no. 2, pp. 201–213.CrossRefGoogle Scholar
  13. Hu, C., Zhang, D., Huang, Z., and Liu, Y.D., The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts, Plant Soil, 2003, vol. 257, pp. 97–111.CrossRefGoogle Scholar
  14. Komárek, J. and Anagnostidis K., Cyanoprokaryota 2. Tell: Oscillatoriales, in Süsswasserflora von Mitteleuropa, Büdel, B., Krienitz, L., Gärtner, G., and Schagerl, M., Eds., Heidelberg: Elsevier, 2005, vol. 19, no. 2.Google Scholar
  15. Komárek, J. and Anagnostidis K., Cyanoprokaryota. Pt. 1. Chroococcales, in Süsswasserflora von Mitteleuropa Ettl, H., Gärtner, G., Heynig, H., and Mollenhhauer, D., Eds., Jena: Gustav Fischer, 1998, vol. 19/1.Google Scholar
  16. Komárek, J., Cyanoprokaryota 3: Heterocytous Genera, in Süsswasserflora von Mitteleuropa, Budel, B., Gartner, G., Krienitz, L., and Schagerl, M., Eds., Berlin: Springer Spektrum, 2013, vol. 19/3.Google Scholar
  17. Komárek, J., Kastovsky, J., Mares, J., and Johansen, J.R., Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach, Preslia, 2014, vol. 86, pp. 295–335.Google Scholar
  18. Komárek, J., Kastovský, J., Ventura, S., Turicchia, S., and Smarda, J., The cyanobacterial genus Phormidesmis, Algol. Studies, 2009, vol. 129, pp. 41–59.CrossRefGoogle Scholar
  19. Loza, V., Perona, E., Carmona, J., and Mateo, P., Phenotypic and genotypic characteristics of Phormidium-like cyanobacteria inhabiting microbial mats are correlated with the trophic status of running waters, Eur. J. Phycol., 2013, vol. 48, no. 2, pp. 235–252.CrossRefGoogle Scholar
  20. Novochkova-Ivanova, L.N., Pochvennye vodorosli fitotsenozov Sahkharo-Gobiiskoi pustynnoi oblasti (Soil Algae of the Phytocenoses of the Sahara-Gobi Desert Region), Leningrad: Nauka, 1980.Google Scholar
  21. Oren, A., Cyanobacteria in hypersaline environments: biodiversity and physiological properties, Biodivers. Conserv., 2015, vol. 24, pp. 781–798.CrossRefGoogle Scholar
  22. Park, J.-G., Algal flora of Korea. Cyanophyta: Cyanophyceae; Chlrococcales, Oscillatoriales in Freshwater Cyanoprokaryota I, Incheon: Natl. Inst. Biol. Res., 2012, vol. 5, no. 1.Google Scholar
  23. Perkerson, R.B. III, Johansen, J.R, Kovácik, L., Brand, J., Kaštovský, J., and Casamatta, D.A., A unique pseudanabaenalean (cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data, J. Phycol., 2011, vol. 47, pp. 1397–1412.CrossRefGoogle Scholar
  24. Pivovarova, Zh.F., Algal groupings of chestnut soils of the Kolyma steppes, Botan. Zh. 1986, vol. 71, no. 7, pp. 888–891.Google Scholar
  25. Řehácová, K., Johansen, J.R., Casamatta, D.A., Xuesong, L., and Vincent, J., Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov., Phycologya, 2007, vol. 46, no. 5, pp. 481–502.CrossRefGoogle Scholar
  26. Sdobnikova, N.V., Soil algae, in Rastitel’nye soobshchestva i zhivotnoe naselenie stepei i pustyn’ Tsentral’nogo Kazakhstana (Plant Communities and Animal Population of the Steppes and Deserts of Central Kazakhstan), Leningrad: Nauka, 1969, pp. 295–306.Google Scholar
  27. Shtina, E.A. and Bolyshev, N.N., Algal communities in the soils of dry and desert steppes, Botan. Zh., 1963, vol. 48, no. 5, pp. 670–680.Google Scholar
  28. Shtina, E.A. and Bolyshev, N.N., Solonetz algae, Botan. Zh., 1960, vol. 45, no. 11, pp. 1619–1629.Google Scholar
  29. Shushueva, M.G., Soil algae in biogeocenoses of the Northern Kazakhstan steppe zone, Botan. Zh., 1985, vol. 70, no. 1, pp. 23–32.Google Scholar
  30. Strunecký, O., Elster, J., and Komárek, J., Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions?, Polar Biol. 2010, no. 33, pp. 1419–1428.CrossRefGoogle Scholar
  31. Strunecký, O., Komárek, J., and Smarda, J., Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers, Preslia, 2014, no. 86, pp. 193–207.Google Scholar
  32. Strunecký, O., Komárek, J., Johansen, J., Lukesová, A., and Elster, J., Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria), J. Phycol., 2013, vol. 49, pp. 1167–1180.CrossRefPubMedGoogle Scholar
  33. Temraleeva, A.D. and Dronova, S.A., First finding of the soil cyanobacterium Nodosilinea epilithica in Russia, Nov. Sist. Vyssh. Rast., 2016, vol. 50, pp. 125–141.Google Scholar
  34. Temraleeva, A.D., Mincheva, E.V., Bukin, Yu.S., and Andreeva, A.M., Sovremennyemetody vydeleniya, kul’tivirovaniya i identifikatsii zelenykh vodoroslei (CHLOROPHYTA) (Modern Techniques for Isolation, Cultivation, and Identification of Green Algae (CHLOROPHYTA)) Kostroma: Kostr. Pech. Dom, 2014.Google Scholar
  35. Turicchia, S., Ventura, S., Komárková, J., and Komárek, J., Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera, Nova Hedwigia, 2009, vol. 89, pp. 165–200.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Physicochemical and Biological Problems in Soil ScienceRussian Academy of SciencesPushchinoRussia

Personalised recommendations