Advertisement

Microbiology

, Volume 87, Issue 2, pp 215–221 | Cite as

Hybrid Selection of Saccharomyces cerevisiae Yeasts for Thermotolerance and Fermentation Activity

  • E. S. Naumova
  • A. Zh. Sadykova
  • N. N. Martynenko
  • G. I. Naumov
Experimental Articles
  • 40 Downloads

Abstract

Molecular genetic screening of Saccharomyces yeasts, isolated from natural sources in the regions of the world with a hot climate (Africa, South America, Southeast and Central Asia) was used for the search of thermotolerant S. cerevisiae strains. Based on physiological tests, four strains were selected that could grow at high temperatures (42 and 43°C) and had good fermentation activity: 7962-4B, 3529-7B, 52922-4-1-1A- 1C, and 87-2421.1-2A. Hybrids of monosporic culture of distiller’s race XII (XII7-2) with the thermotolerant strains were obtained. Unlike the strain XII7-2, which is unable to grow at above 39°C, all hybrids showed good growth at 42°C. Two of the six hybrids analyzed, H2-1 (87-2421.1-2A × XII7-2) and H3-2 (7962-4B × XII7-2), showed higher fermentation activity than the parental strains. According to the results obtained, inter-strain hybridization is an efficient method of obtaining S. cerevisiae strains, which combine thermotolerance with high efficiency of alcoholic fermentation.

Keywords

Saccharomyces cerevisiae distiller yeasts inter-strain hybridization heterosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banat, I.M., Nigam, P., Singh, D., Marchant, P., and McHale, A.P., Ethanol production at elevated temperatures and alcohol concentrations. Part I: Yeasts in general, World J. Microbiol. Biotechnol., 1998, vol. 14, pp. 809–821.CrossRefGoogle Scholar
  2. Cai, J., Zhang, B., and Liu, Y., Hybridization and selection of yeasts. IV. Breeding of yeasts for high ethanol production, Acta Microbiol. Sin., 1982, vol. 22, pp. 48–54.Google Scholar
  3. Dellomonaco, C., Rivera, C., Campbell, P., and Gonzalez, R., Engineered respire-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks, Appl. Environ. Microbiol., 2010, vol. 76, pp. 5067–5078.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Inge-Vechtomov, S.G., New genetic lines of Saccharomyces cerevisiae yeasts, Vestn. LGU, 1963, no. 21, pp. 117–125.Google Scholar
  5. Ishchuk, O.P., Voronovsky, A.Y., Abbas, C.A., and Sibirny, A.A., Construction of Hansenula polymorpha strains with improved thermotolerance, Biotechnol. Bioeng., 2009, vol. 104, pp. 911–919.CrossRefPubMedGoogle Scholar
  6. James, S.A., Collins, M.D., and Roberts, I.N., Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspora, Int. J. Syst. Bacteriol., 1996, vol. 46, pp. 189–194.CrossRefPubMedGoogle Scholar
  7. Javelot, C., Girand, P., Colonna-Ceccaldi, B., and Vladescu, B., Introduction of terpene-producing ability in a wine strain of Saccharomyces cerevisiae, J. Biotechnol., 1991, vol. 21, pp. 239–251.CrossRefGoogle Scholar
  8. Kiritsis, S., New, more environmentally friendly and productive sources for satisfying the rapidly growing requirements of transportation for bioethanol, Energ. Vestn., 2011, vol. 10, no. 1, pp. 9–29.Google Scholar
  9. Kurtzman, C.P., Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora, FEMS Yeast Res., 2003, vol. 4, pp. 233–245.PubMedGoogle Scholar
  10. Lahtchev, K.L., Pesheva, M., and Tzvetanov, O., Construction of hybrid yeasts with increased flocculation for white wine manufacture, J. Wine Res., 1991, vol. 2, pp. 191–201.CrossRefGoogle Scholar
  11. McMillan, J.D., Newman, M.M., Templeton, D.W., and Mohagheghi, A., Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis, Appl. Biochem. Biotechnol., 1999, vols. 77–79, pp. 649–666.CrossRefPubMedGoogle Scholar
  12. Naseeb, S., James, S.A., Alsammar, H., Michaels, C.J., Gini, B., Nueno-Palop, C., Bond, C.J., McGhie, H., Roberts, I.N., and Delneri, D., Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur Naseeb et al., Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 2046–2052.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Naumov, G.I. and Naumova, E.S., Comparative genetics of yeasts. A novel β-fructosidase gene SUC8 in Saccharomyces cerevisiae, Russ. J. Genet., 2010, vol. 46, pp. 323–330.CrossRefGoogle Scholar
  14. Naumov, G.I., James, S.A., Naumova, E.S., Louis, E.J., and Roberts, I.N., Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharo-myces kudriavzevii and Saccharomyces mikatae, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1931–1942.CrossRefGoogle Scholar
  15. Naumov, G.I., Naumova, E.S., and Kondratieva, V.I., The use of hybridization in breeding of eukaryotic microorganisms, Russ. J. Genet., 2006, vol. 42, pp. 1324–1328.CrossRefGoogle Scholar
  16. Naumova, E.S., Sadykova, A.Zh., Martynenko, N.N., and Naumov, G.I., Molecular and genetic characterization of distillers’ yeasts Saccharomyces cerevisiae, Microbiology (Moscow), 2013, vol. 82. pp. 175–185.CrossRefGoogle Scholar
  17. Serpova, E.V., Kishkovskaya, S.A., Martynenko, N.N., and Naumova, E.S., Molecular genetic identification of Crimean wine yeasts, Biotekhnologiya, 2011, no. 6, pp. 47–54.Google Scholar
  18. Stewart, G.G. and Russel, I., One hundred years of yeast research and development in the brewing industry, J. Inst. Brew., 1986, vol. 92, pp. 537–558.CrossRefGoogle Scholar
  19. Vaughan-Martini, A. and Martini, A., Saccharomyces Meyen ex Reess (1870), in The Yeast, a Taxonomic Study, 5th ed., Kurtzman, C.P., Fell, J.W., and Boekhout, T., Eds., Amsterdam: Elsevier}}, 2011, vol. 2, pp. 733–746.Google Scholar
  20. Wingren, A., Galbe, M. and Zacchi, G., Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks, Biotechnol. Prog., 2003, vol. 19, pp. 1109–1117.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. S. Naumova
    • 1
  • A. Zh. Sadykova
    • 1
  • N. N. Martynenko
    • 2
  • G. I. Naumov
    • 1
  1. 1.State Research Institute of Genetics and Selection of Industrial MicroorganismsNRC “Kurchatov Institute”MoscowRussia
  2. 2.Moscow State University of Food ProductionMoscowRussia

Personalised recommendations