, Volume 87, Issue 2, pp 261–271 | Cite as

Diversity of Oil-Degrading Microorganisms in the Gulf of Finland (Baltic Sea) in Spring and in Summer

  • T. Yu. Izmalkova
  • A. B. Gafarov
  • O. I. Sazonova
  • S. L. Sokolov
  • I. A. Kosheleva
  • A. M. Boronin
Experimental Articles


Diversity of the oil-degrading microbial strains isolated from the water and sediments of the Gulf of Finland (Baltic Sea) in winter and in summer was studied. Substrate specificity of the isolates for aliphatic and aromatic hydrocarbons was studied. The isolates belonged to 32 genera of the types Proteobacteria (alpha-, beta-, and gammaproteobacteria), Actinobacteria,Firmicutes, and Bacteroidetes. Seasonal variations of the oil-degrading microbial communities was revealed. The presence of the known genes responsible for the degradation of oil aliphatic and aromatic hydrocarbons was determined. The alkB sequence of the alkane hydroxylase gene was found in ~16% of the studied strains. The sequence of the phnAc phenanthrene 3,4- dioxygenase was found in Sphingobacterium sp. and Arthrobacter sp. isolates retrieved in winter and summer. In five Pseudomonas sp. strains from winter samples, the classical operons of naphthalene degradation (nah) were localized in catabolic plasmids, of which three belonged to IncР-9, one, to IncР-7, and two to an unidentified incompatibility group. Burkholderia and Delftia strains contained the operons for naphthalene degradation via salicylate and gentisate (nag). The presence of nag genes has not been previously reported for Delftia spp. strains. The sequences of the nagG salicylate 5-hydroxylase gene were also found in Achromobacter, Sphingobacterium, and Stenotrophomonas strains.


Baltic Sea biodegradation oil degraders plasmids biodegradation operons salicylate 5-hydroxylase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakirov, E.A., Ermolkin, V.I., Larin, V.I., Mal’tsev, A.K., and Rozhkov, E.L., Geologiya nefti i gaza (Oil and Gas Geology), Moscow: Nedra, 1990.Google Scholar
  2. De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B., and Vandamme, P., Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning, Syst. Appl. Microbiol., 2011, vol. 34, pp. 20–29.CrossRefPubMedGoogle Scholar
  3. Evans, W.C., Fernley, H.N., and Griffiths, E., Oxidative metabolism of phenantrene and anthracene by soil pseudomonads: the ring-fission mechanism, J. Biochem., 1965, vol. 95, pp. 819–831.CrossRefGoogle Scholar
  4. Ferrero, M., Llobet-Brossa, E., Lalucat, J., Garcia-Valdes, E., Rosselo-Mora, R., and Bosch, R., Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western mediterranean region, Appl. Environ. Microbiol., 2002, vol. 68, pp. 957–962.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Greated, A. and Thomas, C.M. A pair of PCR primers for IncP-9 plasmids, Microbiology (UK), 1999, vol. 145, pp. 3003–3004.CrossRefGoogle Scholar
  6. Griffin, R., Churchill, P., Churchill, S., and Jones, L., Biodegradation rate enhancement of hydrocarbons by an oleophilic fertilizer and a rhamnolipid biosurfactant, J. Environ. Qual., 1995, vol. 24, pp. 19–28.Google Scholar
  7. HELCOM, HELCOM Annual Report on Discharges Observed during Aerial Surveillance in the Baltic Sea, 2015, 2016.Google Scholar
  8. Izmalkova, T.Y., Sazonova, O.I., Nagornih, M.O., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., The organization of naphthalene degradation genes in Pseudomonas putida strain AK5, Res. Microbiol., 2013, vol. 164, pp. 244–253.CrossRefPubMedGoogle Scholar
  9. Izmalkova, T.Yu., Mavrodi, D.V., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., Molecular classification of IncP-9 naphthalene degradation plasmids, Plasmid, 2006, vol. 56, pp. 1–10.CrossRefPubMedGoogle Scholar
  10. Izmalkova, T.Yu., Sazonova, O.I., Kosheleva, I.A., and Boronin, A.M., Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains, Russ. J. Genet., 2013, vol. 49, no. 6, pp. 609–616.CrossRefGoogle Scholar
  11. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., The P-7 incompatibility group plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads, Microbiology (Moscow), 2005, vol. 74, no. 3, pp. 290–295.CrossRefGoogle Scholar
  12. Jutkina, J., Heinaru, E., Vedler, E., Juhanson, J., and Heinaru, A., Occurrence of plasmids in the aromatic degrading bacterioplankton of the Baltic Sea, Genes, 2011, vol. 2, pp. 853–868.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge, 1983.CrossRefGoogle Scholar
  14. Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T.C., and Huettel, M., Hydrocarbondegrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill, Appl. Environ. Microbiol., 2011, vol. 77, pp. 7962–7974.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kreitsberg, R., Tuvikene, A., Barsiene, J., Fricke, N.F., Rybakovas, A., Andreikenaite, L., Rumvolt, K., and Vilbaste, S., Biomarkers of environmental contaminants in the coastal waters of Estonia (Baltic Sea): effects on eelpouts (Zoarces viviparus), J. Environ. Monit., 2012, vol. 14, pp. 2298–2308.CrossRefPubMedGoogle Scholar
  16. Laurie, A.D. and Lloyd-Jones, G., Quanification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1814–1817.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Laurie, A.D. and Lloyd-Jones, G., The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism, J. Bacteriol. 1999, vol. 181, pp. 531–540.PubMedPubMedCentralGoogle Scholar
  18. Peix, A., Ramirez-Bahena, M.-H., and Velazquez, E., Historical evolution and current status of the taxonomy of genus Pseudomonas, Infect. Genet. Evol., 2009, vol. 9, pp. 1132–1147.CrossRefPubMedGoogle Scholar
  19. Reunamo, A., Riemann, L., Leskinen, P., and Jørgensen, K.S., Dominant petroleum hydrocarbondegrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans, Mar. Pollut. Bull., 2013, vol. 72, pp. 174–180.CrossRefPubMedGoogle Scholar
  20. Riemann, L., Leitet, C., Pommier, T., Simu, K., Holmfeldt, K., Larsson, U., and Hagström, Å., The native bacterioplankton community in the central Baltic Sea is influenced by freshwater bacterial species, Appl. Environ. Microbiol., 2008, vol. 74, pp. 503–515.CrossRefPubMedGoogle Scholar
  21. Rojo, F., Degradation of alkanes by bacteria, Environ. Microbiol., 2009, vol. 11, pp. 2477–2490.CrossRefPubMedGoogle Scholar
  22. Rossello-Mora, R.A., Lalucat, J., and Garcia-Valdes, E., Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strain, Appl. Environ. Microbiol., 1994, vol. 60, pp. 966–972.PubMedPubMedCentralGoogle Scholar
  23. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989.Google Scholar
  24. Sokolov, S.L., Sazonova, O.I., Gafarov, A.B., Ivanova, A.A., Vetrova, A.A., Prisiazhnaya, N.V., Kosheleva, I.A., and Boronin, A.M., Assessment of degradative potential of oil-oxidizing microorganisms of the Baltic Sea in model microcosms, Biotechnology in Russia, 2017, vol. 33, no. 4, pp. 76–84.Google Scholar
  25. Timmis, K.N., Lehrbach, P.R., Harayama, S., Don, R.H., Mermod, N., Bas, S., Leppick, R., Weightman, A.J., Reineke, W., and Knackmuss, H.-J., Analysis and manipulation of plasmid-encoded pathways for the catabolism of aromatic compounds by soil bacteria, in Plasmids in Bacteria, Helinski, D.R., Cohen, C.N., Clewell, D.B., Jackson, D.A., and Hollaender, A., Eds., N.-Y.: Plenum, 1985, pp. 719–739.CrossRefGoogle Scholar
  26. Van Beilen, J.B. and Funhoff, E.G., Alkane hydroxylases involved in microbial alkane degradation, Appl. Microbiol. Biotechnol., 2007, vol. 74, pp. 13–21.CrossRefPubMedGoogle Scholar
  27. Van de Peer, Y. and De Wachter, R., TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Applic. Biosci., 1994, vol. 10, pp. 569–570.Google Scholar
  28. Viggor, S., Juhanson, J., Jõesaar, M., Mitt, M., Truu, J., Vedler, E., and Heinaru, A., Dynamic changes in the structure of microbial communities in the Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel, Microbiol. Res., 2013, vol. 168, pp. 415–427.CrossRefPubMedGoogle Scholar
  29. Wilkstrom, P., Wilklund, A., Anderson, A.C., and Forman, M., DNA recovery and PCR quantification of catechol-2,3-dioxygenase genes from different soil types, J. Biotechnol., 1996, vol. 52, pp. 107–120.CrossRefGoogle Scholar
  30. Yakimov, M.M., Timmis, K.N., and Golyshin, P.N., Obligate oil-degrading marine bacteria, Curr. Opin. Biotechnol., 2007, vol. 18, pp. 257–266.CrossRefPubMedGoogle Scholar
  31. Yang, Y.Y., Wang, J., Liao, J.Q., Xie, S.G., and Huang, Y., Abundance and diversity of soil petroleum hydrocarbondegrading microbial communities in oil exploring areas, Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 1935–1946.CrossRefPubMedGoogle Scholar
  32. Zhou, N.Y., Fuenmayor, S.L., and Williams, P.A., nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism, J. Bacteriol., 2001, vol. 183, pp. 700–708.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. Yu. Izmalkova
    • 1
  • A. B. Gafarov
    • 1
  • O. I. Sazonova
    • 1
  • S. L. Sokolov
    • 1
  • I. A. Kosheleva
    • 1
  • A. M. Boronin
    • 1
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia

Personalised recommendations