Skip to main content
Log in

Influence of the Pore Diameter in Zeolites on the Activation Energy of Formation of 4-Alkyl-1,3-Dioxanes in the Prins Reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Using the dependence of the activation energy of 4-alkyl-1,3-dioxane formation on the pore diameter of zeolites, the catalytic activity of the latter in the Prins reaction was theoretically explained. The stabilization of a prereaction π-complex in the cavities of a number of zeolites (\({\text{Na}}_{x}^{ + }\)(H2O)y)[AlaSibOc], AlaPbOc, and Cax[H2O]yAlaSibOc) is studied by molecular dynamics methods. It is shown that the dependence of the stabilization energy of the π-complex and the transition state on the diameter of the cavity has an extremal shape. Taking into account the stabilization energies of the π-complex and the transition state in the zeolite cavity, the change in the activation energy of the 4-alkyl-1,3-dioxane formation is determined depending on the pore size. A comparison is made of the nature of changes in the transition state stabilization energy and the activation energy of the cavity diameter. It is demonstrated that the dependence of the activation energy on the diameter gives a narrower interval of optimal pore sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Venuto, P.B., Microporous Mater., 1994, vol. 2, no. 5, p. 297.

    Article  CAS  Google Scholar 

  2. Okachi, T. and Onaka, M., J. Am. Chem. Soc., 2004, vol. 126, p. 2306.

    Article  CAS  PubMed  Google Scholar 

  3. Camblor, M., Corma, A., Iborra, S., Miquel, S., Primo, J., and Valencia, S., J. Catal., 1997, vol. 172, p. 76.

    Article  CAS  Google Scholar 

  4. Aramendía, M.A., Borau, V., Jiménez, C., Marinas, J.M., Romero, F.J., and Urbano, F.J., Catal. Lett., 2001, vol. 73, p.203.

    Article  Google Scholar 

  5. Ratnasamy, P. and Kumar, R., Catal. Today, 1991, vol. 9, p. 329.

    Article  Google Scholar 

  6. Venuto, P.V. and Landis, P.S., Adv. Catal., 1968, vol. 18, p. 259.

    CAS  Google Scholar 

  7. Fu, H., Xie, S., Fu, A., and Ye, T., Comput. Theor. Chem., 2012, vol. 982, p. 51.

    Article  CAS  Google Scholar 

  8. Sangthong, W., Probst, M., and Limtrakul, J., J. Mol. Struct., 2005, vol. 748, p. 119.

    Article  CAS  Google Scholar 

  9. Kim, H.J., Seo, G., Kim, J.-N., and Choi, K.H., Bull. Korean Chem. Soc., 2004, vol. 25, p. 1726.

    Article  CAS  Google Scholar 

  10. Selvaraj, M. and Kawi, S., J. Mol. Catal. A: Chem., 2006, vol. 246, p. 218.

    Article  CAS  Google Scholar 

  11. Wang, J., Jaenicke, S., Chuah, G.K., Hua, W., Yue, Y., and Gao, Z., Catal. Commun., 2011, vol. 12, p. 1131.

    Article  CAS  Google Scholar 

  12. Telalović, S., Ng, J.F., Maheswari, R., Ramanathan, A., Chuah, G. K., and Hanefeld, U., Chem. Commun., 2008, vol. 7345, p. 4631.

    Article  CAS  Google Scholar 

  13. Tateiwa, J., Hashimoto, K., Yamauchi, T., and Uemura, S., Bull. Chem. Soc. Jpn., 1996, vol. 69, p. 2361.

    Article  CAS  Google Scholar 

  14. Reddy, S.S., Raju, D.B., Kumar, S.V., Padmasri, A.H., Narayanan, S., and Rao, R.K.S., Catal. Commun., 2007, vol. 8, p. 261.

    Article  CAS  Google Scholar 

  15. Yadav, J. S., Reddy, B.V.S., and Kumar, G.M., Tetrahedron Lett., 2001, vol. 42, p. 89.

    Article  CAS  Google Scholar 

  16. Dimitriu, E., Gongescu, D., and Hulea, V., Stud. Surf. Sci. Catal., 1993, vol. 78, p. 669.

    Article  Google Scholar 

  17. Dimitriu, E., Trong, O.D., and Kaliaguine, S., J. Catal., 1997, vol. 170, p. 150.

    Article  Google Scholar 

  18. Dimitriu, E., Hulea, V., Chelaru, C., Hulea, T., and Kaliaguine, S., Zeolites and Related Microporous Materials: State of the Art, 1994, vol. 84, p. 1997.

    Google Scholar 

  19. Dimitriu, E., Hulea, V., Fechete, I., Catrinescu, C., Auroux, A., Lacaze, J.F., and Guimon, C., Appl. Catal., A, 1999, vol. 181, p. 15.

  20. Smit, D. and Maesen, T.L.M., Nature, 2008, vol. 451, p. 671.

    Article  CAS  Google Scholar 

  21. Henriques, C., Catalysis by Zeolites, EUCHEME, 2012.

    Google Scholar 

  22. Csicsery, S.M., Zeolites, 1984, vol. 4, p. 202.

    Article  CAS  Google Scholar 

  23. Vakulin, I.V., Talipov, R.F., Pasko, P.A., Talipova, G.R., and Kupova, O.Yu, Microporous Mesoporous Mater., 2018, vol. 270, p. 30.

    Article  CAS  Google Scholar 

  24. Pas’ko, P.A., Vakulin, I.V., and Talipov, R.F., Vestn. Bashkir. Univ., 2017, vol. 22, no. 4, p. 966.

    Google Scholar 

  25. Pas'ko, P.A., Vakulin, I.V., and Talipov, R.F., Butlerovskie Soobshcheniya, 2017, vol. 52, no. 10, p. 45.

    Google Scholar 

  26. Vakulin, I.V., Talipov, R.F., Tukhvatshin, V.S., Talipova, G.R., and Pasko, P.A., 5th Int. School-Conference on Catalysis for Young Scientists “Catalytic Design,” 2018, p. 259.

  27. Kupova, O.Y., Vakulin, I.V., Talipov, R.F., Talipova, G.R., and Morozkin, N.D., React. Kinet., Mech. Catal., 2013, vol. 110, no. 1, p. 41.

    Article  CAS  Google Scholar 

  28. Vakulin, I.V., Kupova, O.Yu., and Talipov, R.F., Vestn. Bashkir. Univ., 2011, vol. 16, no. 3, p. 694.

    Google Scholar 

  29. Kupova, O.Y., Vakulin, I.V., and Talipov, R.F., Comput. Theor. Chem., 2013, vol. 1013, p. 57.

    Article  CAS  Google Scholar 

  30. Dewar, M. and Thiel, W., J. Am. Chem. Soc., 1977, vol. 99, p. 4499.

    Article  Google Scholar 

  31. Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, p. 724.

    Article  CAS  Google Scholar 

  32. Kestutis, A., Mikkelsen, K.V., and Stephan, P.A., J. Chem. Theory Comput., 2008, vol. 4, p. 267.

    Article  CAS  Google Scholar 

  33. Stewart, J.J.P., Quant. Chem. Progr. Exch., 1985, vol. 5, p. 62.

    Google Scholar 

  34. Granovsky, A.A., http://classic.chem.msu.su/gran/ gamess/index.html.

  35. Su, K.H., Wang, Y.B., and Wen, Z.Y., Acta Phys.–Chim. Sin., 1998, vol. 14, p. 856.

    CAS  Google Scholar 

  36. Gonzales, C. and Schlegel, H.B., J. Chem. Phys., 1989, vol. 90, p. 2154.

    Article  Google Scholar 

  37. Delley, B., J. Chem. Phys., 1990, vol. 92, p. 508.

    Article  CAS  Google Scholar 

  38. Delley, B., J. Chem. Phys., 2000, vol. 113, p. 7756.

    Article  CAS  Google Scholar 

  39. Materials Studio Version 6.0., Accelrys Inc., San Diego, 2011.

Download references

FUNDING

This work was supported by grant 17-43-020754 p_a from the Russian Fund for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Vakulin or P. A. Pas’ko.

Additional information

Translated by Andrey Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakulin, I.V., Pas’ko, P.A., Talipov, R.F. et al. Influence of the Pore Diameter in Zeolites on the Activation Energy of Formation of 4-Alkyl-1,3-Dioxanes in the Prins Reaction. Kinet Catal 60, 320–324 (2019). https://doi.org/10.1134/S0023158419030157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419030157

Keywords:

Navigation